Первый дизель Mercedes с системой впрыска типа Common Rail был представлен в конце 1997 года. Это был мотор 2.1 CDI с обозначением ОМ 611 мощностью от 82 до 204 л.с. Он дал начало новому семейству двигателей, применявшемуся, в том числе в коммерческих автомобилях и легких грузовиках (ОМ 646 и ОМ 651).

В зависимости от назначения, дизель получал различное коммерческое обозначение. Например, 180 CDI, 200 CDI, 220 CDI и 250 CDI. Существуют так же модификации BlueTEC и BlueEFFICIENCY.

Изначально этот двигатель имел рабочий объем 2151 куб. см и мощность 102 или 125 л.с. В конструкции агрегата использовалась система впрыска Bosch с электромагнитными форсунками Common Rail первого поколения, система рециркуляции отработавших газов и турбонаддув. Привод ГРМ цепного типа, что снижает затраты на техническое обслуживание.

В 1999 году появились версии мощностью 115 и 143 л.с, а три года спустя - новое поколение 2.1 CDI с обозначением ОМ 646 и отдачей 122 и 150 л.с. Позже были представлены и остальные модификации. Двигатель получил систему Common Rail нового поколения, электрический клапан EGR и генератор с жидкостным охлаждением. ОМ 646 дополнительно оснастили балансирными валами и электрическим ТНВД (вместо механического).

Последнее поколение моторов 2.1 CDI было названо ОМ 651 и дебютировало в 2008 году. Это практически другой двигатель, в котором изменен диаметр цилиндра (уменьшен до 83 мм) и ход поршня (увеличен до 99 мм). Рабочий объем новой версии агрегата сократился до 2143 см3. Степень сжатия была снижена до 16,2:1. Блок двигателя, как и прежде, изготовлен из чугуна, а головка – из легких сплавов.

Новый турбодизель очень продвинутый, а значит и более дорогой в обслуживании и ремонте. Он имеет два турбонагнетателя (в версиях более 143 л.с.), которые создают давление наддува 2 бар. Однорядная цепь ГРМ находится сзади двигателя – со стороны коробки. Балансировочный вал приводится в движение зубчатыми шестернями.

В более мощных модификациях применены пьезоэлектрические форсунки фирмы Delphi. Давление впрыска достигает 2000 бар. Для сравнения, давление впрыска ОМ 611 – 1350 бар. Система впрыска Common Rail обеспечивает мягкую работу двигателя и низкий расход топлива. Экономичность, конечно же, зависит от степени форсировки и веса автомобиля. В случае с Mercedes C-Class средний расход 143-сильной версии составляет около 7 л/100 км. Вопреки общепринятому мнению, система впрыска не является проблемной и слишком дорогой в ремонте.

Механики подчеркивают, что на вторичном рынке большинство дизельных Mercedes имеют гораздо больший пробег, чем показывают счетчики. Отсюда и неприятности, с которыми сталкиваются вторые и последующие владельцы. Турбонагнетатель и двухмассовый маховик редко подводят ранее 150 000 км.

Проблемы появились в последних двигателях ОМ 651. Они связаны с топливными форсунками Delphi (дефектные уже заменены) и утечками охлаждающей жидкости. Затраты на замену форсунок частично компенсировались изготовителем форсунок.

Общие неисправности двигателей 2.1 CDI

Чаще всего владельцы Мерседес с большим пробегом и двигателем 2.1 CDI имеют проблемы с утренним запуском и падением мощности. В обоих случаях причин несколько. Проблемы с запуском, как правило, связаны с падением давления в системе впрыска из-за неисправности насоса, форсунок или клапана высокого давления. Падение мощности может быть вызвано неисправностью системы заслонок во впускном коллекторе.

В автомобилях, оборудованных фильтром твердых частиц (первоначально вообще не использовался, в 2003 году появился в некоторых моделях, а позже стал применяться массово) и передвигающихся только по городу, возникают проблемы с саморегенерацией, а так же происходит разжижение масла топливом.

Проблемы усугубились после появления двигателя серии ОМ 651. Форсунки выходили из строя примерно к 50 000 км. Некоторые источники сообщают, что дефект затронул около 300 000 автомобилей.

Шкив генератора


Шкив генератора имеет муфту свободного хода, которая часто выходит из строя. Неисправность сопровождается шумом, а промедление с заменой может ускорить износ натяжителя ремня. Устранение проблемы не сложное и не слишком дорогое. Шкив стоит менее 60 долларов.

Электромагнитные клапана

Электромагнитные клапаны используются для управления производительностью турбокомпрессора и EGR (старые двигатели 2.1). Когда они отказывают, наблюдается падение мощности. Ремонт быстр и недорог – около 50 долларов.


Форсунки

Симптомы: проблемы с запуском двигателя, неравномерная работа, чрезмерно большой расход топлива. Форсунки можно отремонтировать. Стоимость услуги – около 70 долларов за штуку.


Более серьезные неприятности возникают, когда теряют герметичность уплотнительные шайбы под форсунками. Извлечение форсунок – сложная задача. Они могут прикипеть - понадобится фрезеровка.

Термостат

Симптомы: слишком медленный прогрев двигателя. Термостат может открыться уже при температуре 45 градусов. Внимание! Приобретая данную деталь, всегда используйте каталожный номер – термостат неоднократно модернизировался. Стоимость нового – около 60-70 долларов.


Неисправности двигателей ОМ 651

Форсунки

Вскоре после начала производства нового 2,1-литрового турбодизеля выяснилось, что пьезоэлектрические форсунки Delphi изготовлены с дефектом. Необходима замена.

Утечки охлаждающей жидкости

Бесконтрольные утечки антифриза вскоре могут привести к перегреву двигателя. Виноват в этом насос системы охлаждения. Потекшую помпу необходимо заменить.

Заслонки во впускном коллекторе


Заслонки со временем изнашиваются и разрушаются. Это приводит к заметному падению мощности, а в случае обрыва – к повреждению двигателя. Из-за отсутствия деталей приходится менять весь коллектор, что увеличивает стоимость ремонта до 600 долларов.

В Российских условиях эксплуатации («солярка» плохого качества) топливный фильтр рекомендуется менять через каждые 40 000 км (согласно предписаниям производителя – 60-80 тыс. км). Это позволит продлить срок службы системы впрыска.

Выжигание сажевого фильтра

Процесс саморегенерации не возможен при эксплуатации автомобиля преимущественно на коротких дистанциях. Необходимо периодическое создание благоприятных условий – продолжительные поездки по скоростным шоссе.

Привод ГРМ

В двигателях используется цепной привод ГРМ, не требующий технического обслуживания. Цепь, как правило, не требует замены. Тем не менее, при больших пробегах рекомендуется проверить ее состояние.

Обслуживание

Интервал

каждые 10 000 км

каждые 40 000 км

каждые 60 000 км

каждые 80 000 км

Замена масла *

Замена DPF **

Замена воздушного фильтра

Замена топливного фильтра

Замена приводного ремня

Замена антифриза ***

* Все автомобили с CDI имеют бортовой компьютер, определяющий срок замены масла;

** Производитель не требует периодической замены DPF;

*** Не реже, чем каждые 250 тысяч. км или каждые 15 лет.

Заключение

Двигатель 2.1 CDI не так надежен, как старые моторы, но взамен он дает более высокую отдачу, низкий расход топлива и мягкую работу. Как правило, выходят из строя только навесное и вспомогательное оборудование. Срок службы кривошипно-шатунного механизма весьма значительный.

Технические данные Mercedes 2.1 CDI - часть 1

Модификация

200 CDI

200 CDI

180 CDI

200 CDI

220 CDI

200 CDI

Годы выпуска

1998-2007

1999-2003

с 2010 года

2002-10

1997-2000

2007-09

турбодизель

R4 / 16

турбодизель

R4 / 16

турбодизель

R4 / 16

турбодизель

R4 / 16

турбодизель

R4 / 16

турбодизель

R4 / 16

Рабочий объем

2151/2148

2148

2143

2148

2151

2148

Степень сжатия

19: 1

18: 1

16.2: 1

18: 1

19: 1

17.5 1

Тип ГРМ

DOHC

DOHC

DOHC

DOHC

DOHC

DOHC

Макс. мощность

(кВт / л.с / об. / мин)

75/102/4200

85/115/4200

88/120/2800

90/122/4200

92/125/4200

100/136/3800

Макс. крутящий момент

(Нм / об. / мин)

235/1500

250/1400

300/1400

270/1600

300/1800

270/1600

Тип впрыска

Common Rail

Common Rail

Common Rail

Common Rail

Common Rail

Common Rail

Технические данные Mercedes 2.1 CDI – часть 2

Модификация

200 CDI

220 CDI

200 CDI

220 CDI

220 CDI

250 CDI

Годы выпуска

с 2009 года

1999-2004

с 2010 года

2002-10

2006-09

с 2008 года

Двигатель - тип, количество клапанов

турбодизель

R4 / 16

турбодизель

R4 / 16

турбодизель

R4 / 16

турбодизель

R4 / 16

турбодизель

R4 / 16

турбодизель

R4 / 16

Рабочий объем

2143

2148

2143

2148

2148

2143

Степень сжатия

16.2: 1

18: 1

16.2: 1

18: 1

17.5 1

16.2: 1

Тип ГРМ

DOHC

DOHC

DOHC

DOHC

DOHC

DOHC

Макс. мощность

(кВт / л.с / об. / мин)

100/136/2800

105/143/4200

105/143/3200

110/150/4200

125/170/3800

150/204/4200

Макс. крутящий момент

(Нм / об. / мин)

360/1600

315/1800

350/1200

340/2000

400/2000

500/1600

Тип впрыска

Common Rail

Common Rail

Common Rail

Common Rail

Common Rail

Common Rail

Применение

Mercedes C-Class

Mercedes E

Mercedes S

Mercedes SLK

Mercedes ML

Mercedes Vito, Viano, Sprinter

Mercedes GLK

Система электронного зажигания CDI не так сложна и легко диагностируема, если понимать, как она работает. Зажигание CDI (Capacitor Discharge Ignition) состоит из нескольких основных компонентов (на схеме):

C - заряжаемый конденсатор;
D - выпрямительный диод;
SCR - коммутирующий тиристор;
T - катушка зажигания.

Вариаций этой схемы много, давайте рассмотрим принцип работы. Конденсатор C заряжается черед выпрямительный диод D, а потом разряжается через тиристор SCR на повышающий трансформатор T. На выходе транформатора мы получаем напряжение в несколько килоВольт, благодаря которым происходит пробой воздушного пространства между электродами в свече зажигания. Это всё! Вот так просто!

Но заставить работать весь механизм на двигателе гораздо сложнее. Классической схемой зажигания CDI является двухкатушечная конструкция, впервые примененная на мопедах "Бабетта" . Одна катушка является заряжающей (высоковольтная), вторая (низковольтная) - датчик управления тиристором. Обе катушки одним проводом подключаются на массу. Выход заряжающей катушки мы подключаем на вход 1, а датчик на вход 2. К выходу 3 подключается свеча зажигания.

Собранная на современных компонентах схема начинает выдавать искру при достижении на входе 1 примерно 80 Вольт, оптимальным напряжением считается около 250 Вольт.

Вариации схемы CDI

Начнем с датчика. В качестве датчика может использоваться катушка, датчик Холла, и даже оптрон. В схеме CDI скутеров Сузуки тиристор открывается второй полуволной напряжения, снимаемой с заряжающей катушки - первой полуволной через диод заряжается конденсатор, второй полуволной открывается тиристор. Замечательная схема с минимумом компонентов.

Если двигатель имел зажигание с прерывателем, то у него нет катушки, которую можно было бы использовать, как заряжающую. Очень часто используют повышающий трансформатор, который позволяет поднять напряжение низковольтной катушки до необходимого.

На авиамодельных двигателях экономится каждый грамм веса и каждый миллиметр габарита, поэтому у них нет магнита-ротора. Иногда прямо на вал двигателся клеится маленький магнитик, рядом с которым стоит датчик Холла. Конденсатор заряжается через преобразователь напряжения, который из 3-9В от батарейки делает 250В. Схему преобразователя напряжения в этой статье подробно рассматривать не будем, скажу только, что самое большое распространение получили схемы на основе автогенераторов, ШИМ-контроллеров и инверторного типа.

Если вместо диода D использовать диодный мост, то мы сможем снимать обе полуволны напряжения с катушки. Следовательно можно повысить емкость конденсатора С, что усилит искру.

Настройка УОЗ

Смысл настройки зажигания - получить искру в нужный момент. Если катушки на статоре сделаны неподвижными, то единственный путь - повернуть магнит-ротор относительно цапфы коленвала в нужное положение. Если ротор посажен на шпонку, то придется перепиливать шпоночный паз.

Если у вас используется датчик, то необходимо подобрать его оптимальное положение.

Угол опережения зажигания (УОЗ) выставляется согласно справочным данным по двигателю. Есть несколько способов, которые позволяют отпределить момент искрообразования, но я их сознательно рассматривать не буду. Пользуясь "колхозными" методами я не раз допускал ошибку. Самый правильный, точный и надежный в этом деле инструмент - автомобильный стробоскоп. Поворачиваем ротор в положение, в котором должно происходить искрообразование, ставим метки на роторе и статоре. Включаем стробоскоп, у него есть провод с зажимом, который мы вешаем на высоковольтный провод катушки зажигания. Запускаем двигатель, подсвечиваем метки стробоскопом. Меняя положение датчика добиваемся совпадения меток.

Практически все карбюраторные двигатели квадроциклов и мотоциклов традиционно оснащаются системой зажигания CDI (Capacitor Discharge Ignition). В этой системе энергия накапливается в конденсаторе и в нужный момент он разряжается через первичную обмотку катушки зажигания, которая является повышающим трансформатором. Во вторичной обмотке наводится высокое напряжение, которое пробивает зазор между электродами свечи образуя электрическую дугу, которая воспламеняет смесь бензина и воздуха.


Для синхронизации работы зажигания используется индукционный датчик положения коленвала – ДПК, представляющий из себя катушку, намотанную на сердечнике из постоянного магнита:



Меткой служит прилив на железном корпусе ротора генератора (в народе его называют маховиком):



Когда прилив проносится мимо сердечника датчика, он изменяет магнитный поток через катушку, тем самым индуцируя напряжение на выводах этой катушки. Форма сигнала получается такая:



Т.е. два импульса разной полярности. Практически на всех двигателях полярность включения датчика такова, что первым следует положительный импульс, соответствующий началу прилива, а вторым отрицательный - конец прилива. Для нормальной работы двигателя воспламенение должно происходить немного раньше верхней мертвой точки - ВМТ, чтобы максимум давления продуктов горения достигал как раз в ВМТ. Это «немного раньше» принято называть Углом Опережения Зажигания – УОЗ и измерять в градусах, которые осталось докрутить коленвалу до ВМТ. При старте двигателя УОЗ должен быть минимальным, а с повышением оборотов он должен увеличиваться. Как было сказано выше, ДПК выдает два импульса синхронизации – начало прилива и конец прилива. В простых (не микропроцессорных) системах CDI конец прилива соответствует предустановленному УОЗ – по этому сигналу происходит воспламенение при старте двигателя и на холостых оборотах. Начало прилива соответствует УОЗ на высоких оборотах. Чаще всего в таких системах конец прилива выставлен на 10-15 градусов опережения, а «длинна» прилива от 20 до 30 градусов. При этом продвинутые блоки CDI плавно меняют момент искрообразования от «конца прилива» до «начала прилива» в промежутке от 2000 rpm до 4000 rpm , а дешевые с повышением оборотов просто перескакивают на начало прилива. В микропроцессорных системах CDI длинна прилива намного больше – от 40 до 70 градусов, при этом конец его как и прежде соответствует предустановленному УОЗ, а начало является точкой отсчета для микропроцессора, который в зависимости от оборотов выставляет нужный УОЗ.
В разных двигателях «длинна» прилива разная, поэтому блоки CDI даже с одинаковыми разъемами чаще всего не взаимозаменяемы!
Стоить еще добавить, что для питание блоков CDI необходимо высокое напряжение, т.к. время накопления энергии в конденсаторе ограничено емкость его берется маленькой а заряжается он высоким напряжением – несколько сотен вольт. Для этого в простых системах в генераторе имеется дополнительная высоковольтная обмотка. Мощность этой обмотки небольшая, поэтому искра в таких системах при старте двигателя слабая, что затрудняет зимнюю эксплуатацию. Чтобы избежать этой проблемы используют так называемые DC-CDI , в них конденсатор заряжается от повышающего преобразователя напряжения питающегося от аккумулятора. В таких системах мощность искры не зависит от оборотов и пуск двигателя в холодное время намного легче.

Теперь о недостатках зажигания CDI . Самым главным недостатком, который невозможно устранить за небольшие деньги, является очень «слабая» «короткая» искра. Невозможно построить мощную систему CDI без значительных материальных затрат.
Например CDI для автомобильных двигателей отечественной разработки стоят больше тысячи долларов, а импорные, которые устанавливаются на гоночные автомобили с высокооборотистыми моторами могут стоить не одну тысячу.
Чем больше объем цилиндра в двигателе, тем сильнее сказывается недостаток энергии искры. Выражается это в неполном сгорании топлива, потери мощности, очень большом расходе топлива. Когда CDI только появилось его ставили на мопеды, мотоциклы, чаще всего объем двигателя которых был 50 кубиков. Такой маленький объем топливовоздушной смеси легко успевал сгореть от слабенькой искры CDI . С повышением кубатуры стало ясно, что надо что-то менять и появились DC-CDI . Но кубатура продолжала расти а вместе с ней росло и кол-во бензина, вылетающего в буквальном смысле в трубу. Придумали даже системы, дожигающие бензин в выхлопной трубе! :о) Я не понимаю, чем думали все это время производители мототехники, ведь в то-же время на автомобилях уже давно использовалась другая система зажигания, с накоплением энергии в катушке индуктивности, которая позволяла за те же деньги получить мощность искры в сотни раз больше и решить все проблемы с зажиганием. Конечно, сейчас на инжекторные двигатели современной мототехники уже не ставят CDI . Но это капля в море! На сегодняшний день картина такова, что 90 процентов мотоциклов и квадроциклов продолжает жрать бензин и выплевывать его в атмосферу.
Казалось бы все очень просто – надо поменять на всех зажигание на более совершенное, но есть несколько НО! Если это CDI то получается очень дорого. Если же это IDI как в инжекторных системах, то для его работы необходимо менять ротор генератора, что получается еще дороже. (для корректного управления режимами работы катушки в системе IDI не достаточно одной метки на маховике, используется несколько десятков коротких меток – по сути зубчатое колесо с синхронизацией по пропущенному зубу) Все это так, если решать задачу в лоб. Но если немножко подумать, применить мощный микропроцессор и проявить изобретательность, то окажется, что не все так уж плохо!

Дизельные двигатели CDI по всем показателям в настоящее время заняли лидирующие позиции на мировом рынке.

Что такое CDI двигатель

Производство двигателя впервые было налажено немецким концерном «Мерседес». Сокращение CDI расшифровывается, как Common rail Diesel Injection, что означает система впрыска дизельного топлива.

Данная система спроектирована высококвалифицированными работниками в 2001 году. Система подачи топлива дизеля Common Rail была взята за основу при разработке CDI двигателей. Предъявляемые повышенные требования к дизельным двигателям, стали фундаментом зарождения системы CR, а в будущем и CDI. Система Common Rail установленная на дизельный мотор впервые запущена в 1997 году компанией «Bosch».

Уменьшение потребления топлива на 15%, увеличение мощности мотора CDI на 40%, связано с использованием системы Common Rail, но значительно затрудняет их ремонт. Поскольку «Мерседес» является передовым концерном, то он незамедлительно внедрил на новые автомобили данную систему.

Ко всему прочему владельцы автомобилей со старыми двигателями получили возможность замены на мотор CDI нового образца и получение фирменных комплектующих к ним.

Компания «Мерседес» стала первой из компаний, которые смогли предложить такую услугу. Тем самым еще более прочно укрепив свой статус лидера на рынке.

Работа и обслуживание моторов

Работает Common Rail за счет большого давления, которое присутствует постоянно в единой магистрали и через управляемые электроникой впрыскиваются в цилиндры. Зачастую клапаны устанавливают пьезоэлектрические, такие установлены на двигателях Mercedes.

Естественно техническое обслуживание и ремонт CDI увеличиваются в цене, по сравнению с традиционными. Зато повышается экономичность, увеличивается крутящий момент, мощность, повышается срок эксплуатации деталей.

Присутствуют в CDI также такие неоспоримые качества как снижение уровня шума, токсичности, вибрации. Еще в конструкцию был внедрен блок управления, который повышает качество работы системы питания за счет многочисленных программ.

Независимо от оборотов двигателя и нагрузки при любой последовательности впрыска по цилиндрам, данный блок управления всегда поддерживает высокое давление. За счет этого даже при самых маленьких оборотах коленчатого вала топливная смесь впрыскивается в цилиндр.

«Предварительный» впрыск — это ноу-хау компании «Мерседес» специалисты, которой внедрили дополнительно к системе Common Rail в 2001 году. Принцип его работы основан на впрыске топлива за доли секунды до основной порции топливной смеси. Это позволяет основной порции топлива попадать в камеру сгорания уже предварительно разогретую.

Воспламенение топлива за счет этого естественно улучшается, что позволяет снизить расход и . За счет такого принципа функционирования дизельные моторы CDI обрели свое наименование. Каждый второй автомобиль Европы на данный момент имеет в своей комплектации дизельный двигатель CDI.

Изначально такие движки естественно были установлены на автомобили компании «Мерседес». Это были автомобили серий ML и Vito.

В 2002 году один из основных французских производителей Peugeot и Итальянская компания-производитель Fiat стали применять аналогичную систему. Но лидирующей компанией по вопросам технологий, сервиса и разработок остается Mercedes. Компания не сдает своих убеждений не при каких обстоятельствах.

Поэтому при настоятельной потребности ремонта двигателя CDI, правильным решением будет обращение в специализированный сервис компании, где будет произведена высококвалифицированная работа специалистов.

Технически компания «Мерседес» безостановочно развивается. Единые нормативы обслуживания своих автомобилей принадлежат именно разработчикам автогиганта Mercedes.

На основании разработанных стандартов клиентам концерна рекомендуется использовать оригинальные автозапчасти и обращаться к дилерам. Если же на автомобиле установлены не оригинальные запчасти, то компания все гарантийные обязательства аннулирует.

Обслуживание моторов требует высокой квалификации и необходимость применения оригинальных фирменных автозапчастей. Срок службы двигателей CDI имеет значительную цифру. По факту поломок выходят из строя навесное или вспомогательное оборудование.

Превосходное обслуживание, передовые технологии, качество — все эти достойные выражения в автомобильной среде принадлежат компании, разработавшей двигатели марки CDI, а именно великому автоконцерну «Мерседес-Бенц».

Современный автомобиль трудно представить без зажигания. Основные преимущества, которые дает система электронного зажигания общеизвестны, они следующие:
более полное сгорание топлива и связанное с этим повышение мощности и экономичности;
снижение токсичности отработавших газов;
облегчение холодного пуска;
увеличение ресурса свечей зажигания;
снижение энергопотребления;
возможность микропроцессорного управления зажиганием.
Но всё это в основном относится к системе CDI
На данный момент, в автомобильной промышленности практически отсутствуют системы зажигания, основанные на накоплении энергии в конденсаторе: CDI (Capacitor Discharge Ignition) - она же тиристорная (конденсаторная) (кроме 2-х тактных импортных двигателей). А системы зажигания основанные на накоплении энергии в индуктивности: ICI (ignition coil inductor) пережили момент перехода с контактов на коммутаторы, где контакты прерывателя были банально заменены транзисторным ключом и датчиком Холла не претерпев принципиальных изменений (пример зажигания в ВАЗ 2101…07 и в интегральные системы зажигания ВАЗ 2108…2115 и далее). Основная причина доминирующего распространения систем зажигания ICI - это возможность интегрального исполнения, что влечёт удешевление производства, упрощение сборки и монтажа, за которое расплачивается конечный пользователь.
При этой, так сказать, системы ICI все недостатки, основным из которых является относительно низкая скорость перемагничивания сердечника и как следствие резкий рост тока первичной обмотки с ростом оборотов двигателя, и потеря энергии. Что приводит к тому, что с ростом оборотов, ухудшается воспламенение смеси, как следствие сбивается фаза начального момента роста давления вспышки, ухудшается экономичность.

Частичное, но далеко не лучшее решение этой проблемы, является применение сдвоенных и счетверённых катушек зажигания (т.н.) этим самым производитель распределил нагрузку по частоте перемагничивания с одной катушки зажигания на две или четыре, тем самым, снижая частоту перемагничивания сердечника для одной катушки зажигания.
Хочу заметить, что на машинах с схемой зажигания (ВАЗ 2101…2107), где искра формируется за счет прерывания тока в достаточно высокоомной катушке механическим прерывателем, что замена на электронный коммутатор от или ему подобный в автомобилях с высокоомной катушкой не дает ничего, кроме снижения токовой нагрузки на контакт.
Дело в том, что RL-параметры катушки должны удовлетворять противоречивым требованиям. Во-первых, активное сопротивление R должно ограничивать ток на уровне, достаточном для накопления необходимого количества энергии при пуске, когда напряжение аккумулятора может упасть в 1,5 раза. С другой стороны, слишком большой ток приводит к преждевременному выходу из строя контактной группы, поэтому ограничен вариатором или длительностью импульса накачки в. Во-вторых, для увеличения количества запасенной энергии необходимо увеличивать индуктивность катушки. При этом с ростом оборотов сердечник не успевает перемагнититься (о чём писалось выше). Как следствие вторичное напряжение в катушке не успевает достигнуть номинального значения, и энергия искры, пропорциональная квадрату тока, резко снижается на высоких (более ~3000) оборотах двигателя.
Наиболее полно преимущества электронной системы зажигания проявляются в конденсаторной системе зажигания с накоплением энергии в ёмкости, а не в сердечнике. Один из вариантов конденсаторной системы зажигания и описан в данной статье. Подобные устройства отвечают большинству требований, предъявляемых к системе зажигания. Однако их массовому распространению препятствует наличие в схеме высоковольтного импульсного трансформатора, изготовление которого представляет известную сложность (об этом ниже).
В данной схеме высоковольтный конденсатор заряжается от DC/DC преобразователя, на транзисторах П210, при поступлении сигнала управления тиристор подключает заряженный конденсатор к первичной обмотке катушки зажигания, при этом DC-DC работающий в режиме блокинг-генератора останавливается. Катушка зажигания используется только как трансформатор (ударный LC контур).
Обычно напряжение на первичной обмотке нормируется на уровне 450…500В. Наличие высокочастотного генератора и стабилизация напряжения делает величину запасаемой энергии практически независимой от напряжения аккумулятора и частоты вращения вала. Такая структура получается гораздо более экономичной, чем при накоплении энергии в индуктивности, так как ток через катушку зажигания течет только в момент искрообразования. Применение 2-х тактного автогенераторного преобразователя позволило поднять КПД до 0,85. Нижеприведенная схема имеет свои преимущества и недостатки. К достоинствам надо отнести:
нормирование вторичного напряжения, независимо от частоты вращения коленчатого вала в рабочем диапазоне оборотов.
простота конструкции и как следствие – высокая надежность;
высокий КПД.
К недостаткам:
сильный нагрев и, как следствие, - нежелательно размещать в месте моторного отсека. Самое, на мой взгляд, удачное место расположения – бампер автомобиля.
По сравнению с системой зажигания ICI с накоплением энергии в катушке зажигания, конденсаторная (CDI) имеет следующие преимущества:
высокая скорость нарастания высоковольтного напряжения;
и достаточное (0,8мс) время горения дугового разряда и, как следствие, - роста давления вспышки топливной смеси в цилиндре, из-за этого повышается стойкость двигателя к детонации;
энергия вторичной цепи выше, т.к. нормирована по времени горения дуги от момента зажигания (МЗ) до верхней мёртвой точки (ВМТ) и не ограничена сердечником катушки. Как следствие – лучшая воспламеняемость топлива;
более полное сгорание топлива;
лучшую самоочистку свечей зажигания, камер сгорания;
отсутствие калильного зажигания.
меньший эрозионный износ контактов свечей зажигания, распределителя. Как следствие - больший срок службы;
уверенный запуск в любую погоду, даже на подсевшей АКБ. Блок начинает уверенно работать от 7 В;
мягкая работа двигателя, по причине только одного фронта горения.

Следует тщательно подойти к технологии изготовления трансформатора, т.к. 99% неудачных попыток повторения похожих и этой схемы были связаны именно с неправильной намоткой трансформатора, монтажа и несоблюдением правил подключения нагрузок.
Для трансформатора применяется кольцо магнитной проницаемостью ч=2000, сечением >=1,5см 2 (например, неплохие результаты показал: «сердечник М2000НМ1-36 45х28х12»).

Намоточные данные:

Технология сборки:
Обмотка накладывается виток к витку по свеже-пропитанной эпоксидной смолой прокладке.
После окончания слоя или обмотки в одном слое - обмотка покрывается эпоксидной смолой до заполнения межвитковых пустот.
Обмотка закрывается прокладкой по свежей эпоксидной смоле с выдавливанием избытка. (из-за отсутствия вакуумной пропитки)
Так же следует обратить внимание на заделку выводов:
на одевается фторопластовая трубка и фиксируется капроновой ниткой. На повышающей обмотке выводы гибкие, выполненные проводом: МГТФ-0,2…0,35.
После пропитки и изоляции первого ряда (обмотки 1-2-3, 4-5-6) по всему кольцу наматывается повышающая обмотка (7-8) послойно, виток к витку. , оголение слоёв, «барашки» - не допускаются.
От качества изготовления трансформатора практически зависти надёжность и долговечность работы блока.
Расположение обмоток показано на рисунке 3.

Сборка электронного блока
Для лучшего теплоотвода блок рекомендуется собирать в дюралевом оребреном корпусе, приблизительный размер – 120 x 100 x 60 мм, толщина материала – 4...5 мм.
На стенку корпуса через изоляционную теплопроводную прокладку ставятся транзисторы П210.
Монтаж выполняется навесным монтажом с учетом правил монтажа высоковольтных, импульсных устройств.
Плату управления допустимо выполнять на печатной либо на макетной плате.
Готовое устройство налаживания не требует, необходимо лишь уточнить включение обмоток 1, 3 в базовой цепи транзисторов, и если генератор не запускается – поменять местами.
Конденсатор, установленный на трамблёре при использовании CDI отключают.

Детали
Практика показала, что попытка заменить транзисторы П210 на современные кремниевые приводит к значительному усложнению электрической схемы (см. 2 нижние схемы на КТ819 и TL494), необходимостью тщательной настройки, которую после одного - двух лет эксплуатации в тяжелых режимах (нагрев, вибрация) приходится выполнять повторно.
Личная практика с 1968 года показала, что применение транзисторов П210 позволяет забыть об электронном блоке на 5...10 лет, а применение высококачественных компонентов (особенно накопительного конденсатора (МБГЧ) с долго нестареющим диэлектриком) и аккуратное изготовление трансформатора – и на более долгий срок.

1969-2006 Все права на это схемное решение принадлежат В.В.Алексееву. При перепечатке ссылка обязательна.
Задать вопрос можно по адресу, указанному в правом нижнем углу.

Литература