– универсальный силовой агрегат, используемый практически во всех видах современного транспорта. Три луча заключенные в окружность, слова «На земле, на воде и в небе» — товарный знак и девиз компании Мерседес Бенц, одного из ведущих производителей дизельных и бензиновых двигателей. Устройство двигателя, история его создания, основные виды и перспективы развития – вот краткое содержание данного материала.

Немного истории

Принцип превращения возвратно-поступательного движения во вращательное, посредством использования кривошипно-шатунного механизма известен с 1769 года, когда француз Николя Жозеф Кюньо показал миру первый паровой автомобиль. В качестве рабочего тела двигатель использовал водяной пар, был маломощным и извергал клубы черного, дурнопахнущего дыма. Подобные агрегаты использовались в качестве силовых установок на заводах, фабриках, пароходах и поездах, компактные же модели существовали в виде технического курьеза.

Все изменилось в тот момент, когда в поисках новых источников энергии человечество обратило свой взор на органическую жидкость — нефть. В стhемлении повысить энергетические характеристики данного продукта, ученные и исследователи, проводили опыты по перегонке и дистилляции, и, наконец, получили неизвестное доселе вещество – бензин. Эта прозрачная жидкость с желтоватым оттенком сгорала без образования копоти и сажи, выделяя намного большее, чем сырая нефть, количество тепловой энергии.

Примерно в то же время Этьен Ленуар сконструировал первый газовый двигатель внутреннего сгорания, работавший по двухтактной схеме, и запатентовал его в 1880 году.

В 1885 году немецкий инженер Готтлиб Даймлер, в сотрудничестве с предпринимателем Вильгельмом Майбахом, разработал компактный бензиновый двигатель, уже через год нашедший свое применение в первых моделях автомобилей. Рудольф Дизель, работая в направлении повышения эффективности ДВС (двигателя внутреннего сгорания), в 1897 году предложил принципиально новую схему воспламенения топлива. Воспламенение в двигателе, названном в честь великого конструктора и изобретателя, происходит за счет нагревания рабочего тела при сжатии.

А в 1903 году братья Райт подняли в воздух свой первый самолет, оснащенный бензиновым двигателем Райт-Тейлор, с примитивной инжекторной схемой подачи топлива.

Как это работает

Общее устройство двигателя и основные принципы его работы станут понятны при изучении одноцилиндровой двухтактной модели.

Такой ДВС состоит из:

  • камеры сгорания;
  • поршня, соединенного с коленвалом посредством кривошипно-шатунного механизма;
  • системы подачи и воспламенения топливно-воздушной смеси ;
  • клапана для удаления продуктов горения (выхлопных газов).

При пуске двигателя поршень начинает путь от верхней мертвой точки (ВМТ) к нижней (НМТ), за счет поворота коленвала. Достигнув нижней точки, он меняет направление движения к ВМТ, одновременно с чем проводится подача топливно-воздушной смеси в камеру сгорания. Движущийся поршень сжимает ТВС, при достижении верхней мертвой точки система электронного зажигания воспламеняет смесь. Стремительно расширяясь, горящие пары бензина отбрасывают поршень в нижнюю мертвую точку. Пройдя определенную часть пути, он открывает выхлопной клапан, через который раскаленные газы покидают камеру сгорания. Пройдя нижнюю точку, поршень меняет направление движения к ВМТ. За это время коленвал совершил один оборот.

Данные пояснения станут более понятными при просмотре видео о работе двигателя внутреннего сгорания.

Данный видеоролик наглядно показывает устройство и работу двигателя автомобиля.

Два такта

Основным недостатком двухтактной схемы, в которой роль газораспределительного элемента играет поршень, является потеря рабочего вещества в момент удаления выхлопных газов. А система принудительной продувки и повышенные требования к термостойкости выхлопного клапана приводят к увеличению цены двигателя. В противном случае добиться высокой мощности и долговечности силового агрегата не представляется возможным. Основная сфера применения подобных двигателей – мопеды и недорогие мотоциклы, лодочные моторы и бензокосилки.

Четыре такта

Описанных недостатков лишены четырехтактные ДВС, используемые в более «серьезной» технике. Каждая фаза работы такого двигателя (впуск смеси, ее сжатие, рабочий ход и выпуск отработанных газов), осуществляется при помощи газораспределительного механизма .

Разделение фаз работы ДВС очень условно. Инерционность отработавших газов, возникновение локальных вихрей и обратных потоков в зоне выхлопного клапана приводит к взаимному перекрыванию во времени процессов впрыска топливной смеси и удаления продуктов горения. Как результат, рабочее тело в камере сгорания загрязняется отработанными газами, вследствие чего меняются параметры горения ТВС, уменьшается теплоотдача, падает мощность.

Проблема была успешно решена путем механической синхронизации работы впускных и выпускных клапанов с оборотами коленвала. Проще говоря, впрыск топливно-воздушной смеси в камеру сгорания произойдет только после полного удаления отработанных газов и закрытия выхлопного клапана.

Но данная система управления газораспределением так же имеет свои недостатки. Оптимальный режим работы двигателя (минимальный расход топлива и максимальная мощность), может быть достигнут в достаточно узком диапазоне оборотов коленвала.

Развитие вычислительной техники и внедрение электронных блоков управления дало возможность успешно разрешить и эту задачу. Система электромагнитного управления работой клапанов ДВС позволяет на лету, в зависимости от режима работы, выбирать оптимальный режим газораспределения. Анимированные схемы и специализированные видео облегчат понимание этого процесса.

На основании видео не сложно сделать вывод, что современный автомобиль это огромное количество всевозможных датчиков.

Виды ДВС

Общее устройство двигателя остается неизменным достаточно долгое время. Основные различия касаются видов используемого топлива, систем приготовления топливно-воздушной смеси и схем ее воспламенения.
Рассмотрим три основных типа:

  1. бензиновые карбюраторные;
  2. бензиновые инжекторные;
  3. дизельные.

Бензиновые карбюраторные ДВС

Приготовление гомогенной (однородной по своему составу), топливно-воздушной смеси происходит путем распыления жидкого топлива в воздушном потоке, интенсивность которого регулируется степенью поворота дроссельной заслонки. Все операции по приготовлению смеси проводятся за пределами камеры сгорания двигателя. Преимуществами карбюраторного двигателя является возможность регулировки состава топливной смеси «на коленке», простота обслуживания и ремонта, относительная дешевизна конструкции. Основной недостаток – повышенный расход топлива.

Историческая справка. Первый двигатель данного типа сконструировал и запатентовал в 1888 году российский изобретатель Огнеслав Костович. Оппозитная система горизонтально расположенных и двигающихся навстречу друг другу поршней, до сих пор успешно используется при создании двигателей внутреннего сгорания. Самым известным автомобилем, в котором использовался ДВС данной конструкции, является Фольксваген Жук.

Бензиновые инжекторные ДВС

Приготовление ТВС осуществляется в камере сгорания двигателя, путем распыления топлива инжекторными форсунками. Управление впрыском осуществляется электронным блоком или бортовым компьютером автомобиля. Мгновенная реакция управляющей системы на изменение режима работы двигателя обеспечивает стабильность работы и оптимальный расход топлива. Недостатком считается сложность конструкции, профилактика и наладка возможны только на специализированных станциях технического обслуживания.

Дизельные ДВС

Приготовление топливно-воздушной смеси происходит непосредственно в камере сгорания двигателя. По окончании цикла сжатия воздуха, находящегося в цилиндре, форсунка проводит впрыск топлива. Воспламенение происходит за счет контакта с перегретым в процессе сжатия атмосферным воздухом. Всего лишь 20 лет назад низкооборотистые дизеля использовались в качестве силовых агрегатов специальной техники. Появление технологии турбонагнетания открыло им дорогу в мир легковых автомобилей.

Пути дальнейшего развития ДВС

Конструкторская мысль никогда не стоит на месте. Основные направления дальнейшего развития и усовершенствования двигателей внутреннего сгорания – повышение экономичности и минимизация вредных для экологии веществ в составе выхлопных газов. Применение слоистых топливных смесей, конструирование комбинированных и гибридных ДВС – лишь первые этапы долгого пути.

Это вступительная часть цикла статей посвящённых Двигателю Внутреннего Сгорания , являющаяся кратким экскурсом в историю, повествующая об эволюции ДВС. Так же, в статье будут затронуты первые автомобили.

В следующих частях будут подробно описаны различные ДВС:

Шатунно-поршневые
Роторные
Турбореактивные
Реактивные

Двигатель был установлен на лодку, которая смогла подняться вверх по течению реки Сона . Спустя год, после испытаний, братья получили патент на своё изобретение, подписаный Наполеоном Бонопартом, сроком на 10 лет.

Правильнее всего, было бы назвать этот двигатель реактивным, так как его работа заключалась в выталкивании воды из трубы находящейся под днищем лодки…

Двигатель состоял из камеры поджигания и камеры сгорания, сильфона для нагнетания воздуха, топливо-раздаточного устройства и устройства зажигания. Топливом для двигателя служила угольная пыль.

Сильфон впрыскивал струю воздуха смешанную с угольной пылью в камеру поджигания где тлеющий фитиль зажигал смесь. После этого, частично подожжённая смесь (угольная пыль горит относительно медленно) попадала в камеру сгорания где полностью прогорала и происходило расширение.
Далее давление газов выталкивало воду из выхлопной трубы, что заставляло лодку двигаться, после этого цикл повторялся.
Двигатель работал в импульсном режиме с частотой ~12 и/минуту.

Спустя некоторое время, братья усовершенствовали топливо добавив в него смолу, а позже заменили его нефтью и сконструировали простую систему впрыска .
В течении следующих десяти лет проект не получил никакого развития. Клод уехал в Англию с целью продвижения идеи двигателя, но растратил все деньги и ничего не добился, а Джозеф занялся фотографией и стал автором первой в мире фотографии «Вид из окна» .

Во Франции, в доме-музее Ньепсов, выставлена реплика «Pyreolophore».

Чуть позже, де Рива водрузил свой двигатель на четырёхколёсную повозку, которая, по мнению историков, стала первым автомобилем с ДВС.

Про Алессандро Вольта

Вольта впервые поместил пластины из цинка и меди в кислоту, чтобы получить непрерывный электрический ток, создав первый в мире химический источник тока («Вольтов столб») .

В 1776 г. Вольта изобрел газовый пистолет - «пистолет Вольты», в котором газ взрывался от электрической искры.

В 1800 году построил химическую батарею, что позволило получать электричество с помощью химических реакций.

Именем Вольты названа единица измерения электрического напряжения - Вольт.


A - цилиндр, B - «свеча» зажигания, C - поршень, D - «воздушный» шар с водородом, E - храповик, F - клапан сброса отработанных газов, G - рукоятка для управления клапаном.

Водород хранился в «воздушном» шаре соединённым трубой с цилиндром. Подача топлива и воздуха, а так же поджиг смеси и выброс отработанных газов осуществлялись вручную, с помощью рычагов.

Принцип работы:

Через клапан сброса отработанных газов в камеру сгорания поступал воздух.
Клапан закрывался.
Открывался кран подачи водорода из шара.
Кран закрывался.
Нажатием на кнопку подавался электрический разряд на «свечу».
Смесь вспыхивала и поднимала поршень вверх.
Открывался клапан сброса отработанных газов.
Поршень падал под собственным весом (он был тяжёлый) и тянул верёвку, которая через блок поворачивала колёса.

После этого цикл повторялся.

В 1813 году де Рива построил ещё один автомобиль. Это была повозка длиной около шести метров, с колесами двухметрового диаметра и весившея почти тонну.
Машина смогла проехать 26 метров с грузом камней (около 700 фунтов) и четырьмя мужчинами, со скоростью 3 км/ч.
С каждым циклом, машина перемещалась на 4-6 метров.

Мало кто из его современников серьезно относился к этому изобретению, а Французская Академия Наук утверждала, что двигатель внутреннего сгорания никогда не будет конкурировать по производительности с паровой машиной.

В 1833 году , американский изобретатель Лемюэль Веллман Райт , зарегистрировал патент на двухтактный газовый двигатель внутреннего сгорания с водяным охлаждением.
(см. ниже) в своей книге «Gas and Oil Engines» написал о двигателе Райта следующее:

«Чертеж двигателя весьма функционален, а детали тщательно проработаны. Взрыв смеси действует непосредственно на поршень, который через шатун вращает кривошипный вал. По внешнему виду двигатель напоминает паровую машину высокого давления, в которой газ и воздух подаются с помощью насосов из отдельных резервуаров. Смесь, находящаяся в сферических ёмкостях поджигалась во время подъёма поршня в ВМТ (верхняя мёртвая точка) и толкала его вниз/вверх. В конце такта открывался клапан и выбрасывал выхлопные газы в атмосферу.»

Неизвестно, был ли когда-либо этот двигатель построен, однако есть его чертёж:

В 1838 году , английский инженер Уильям Барнетт получил патент на три двигателя внутреннего сгорания.

Первый двигатель - двухтактный одностороннего действия (топливо горело только с одной стороны поршня) с отдельными насосами для газа и воздуха. Поджиг смеси происходил в отдельном цилиндре, а потом горящая смесь перетекала в рабочий цилиндр. Впуск и выпуск осуществлялся через механические клапана.

Второй двигатель повторял первый, но был двойного действия, то есть горение происходило попеременно с обоих сторон поршня.

Третий двигатель, так же был двойного действия, но имел впускные и выпускные окна в стенках цилиндра открывающееся в момент достижения поршнем крайней точки (как в современных двухтактниках). Это позволяло автоматически выпускать выхлопные газы и впускать новый заряд смеси.

Отличительной особенностью двигателя Барнетта было то, что свежая смесь сжималась поршнем перед воспламенением.

Чертёж одного из двигателей Барнетта:

В 1853-57 годах , итальянские изобретатели Еугенио Барзанти и Феличе Маттеуччи разработали и запатентовали двухцилиндровый двигатель внутреннего сгорания мощность 5 л/с.
Патент был выдан Лондонским бюро так как итальянское законодательство не могло гарантировать достаточную защиту.

Строительство прототипа было поручено компании «Bauer & Co. of Milan» (Helvetica) , и завершено в начале 1863 года. Успех двигателя, который был гораздо более эффективным чем паровая машина, оказался настолько велик, что компания стала получать заказы со всего света.

Ранний, одноцилиндровый двигатель Барзанти-Маттеуччи:

Модель двухцилиндрового двигателя Барзанти-Маттеуччи:

Маттеуччи и Барзанти заключили соглашение на производство двигателя с одной из бельгийских компаний. Барзанти отбыл в Бельгию для наблюдения за работой лично и внезапно умер от тифа. Со смертью Барзанти все работы по двигателю были прекращены, а Маттеуччи вернулся к своей прежней работе в качестве инженера-гидравлика.

В 1877 году, Маттеуччи утверждал, что он с Барзанти были главными создателями двигателя внутреннего сгорания, а двигатель построенный Августом Отто очень походил на двигатель Барзанти-Маттеуччи.

Документы касающиеся патентов Барзанти и Маттеуччи хранятся в архиве библиотеки Museo Galileo во Флоренции.

Самым главным изобретением Николауса Отто был двигатель с четырёхтактным циклом - циклом Отто . Этот цикл по сей день лежит в основе работы большинства газовых и бензиновых двигателей.

Четырёхтактный цикл был самым большим техническим достижением Отто, но вскоре обнаружилось, что за несколько лет до его изобретения точно такой же принцип работы двигателя был описан французским инженером Бо де Роша (см. выше) . Группа французских промышленников оспорила патент Отто в суде, суд счёл их доводы убедительными. Права Отто, вытекавшие из его патента, были значительно сокращены, в том числе было аннулировано его монопольное право на четырёхтактный цикл.

Не смотря на то, что конкуренты наладили выпуск четырёхтактных двигателей, отработанная многолетним опытом модель Отто всё равно была лучшей, и спрос на неё не прекращался. К 1897 году было выпущено около 42 тысяч таких двигателей разной мощности. Однако то обстоятельство, что в качестве топлива использовался светильный газ, сильно суживало область их применения.
Количество светильногазовых заводов было незначительно даже в Европе, а в России их вообще было только два - в Москве и Петербурге.

В 1865 году , французкий изобретатель Пьер Хьюго получил патент на машину представлявшую собой вертикальный одноцилиндровый двигатель двойного действия, в котором для подачи смеси использовались два резиновых насоса, приводимых в действие от коленчатого вала.

Позже Хьюго сконструировал горизонтальный двигатель схожий с двигателем Ленуара.

Science Museum, London.

В 1870 году , австро-венгерский изобретатель Сэмюэль Маркус Зигфрид сконструировал двигатель внутреннего сгорания работающий на жидком топливе и установил его на четырёхколёсную тележку.

Сегодня этот автомобиль хорошо известен как «The first Marcus Car».

В 1887 году, в сотрудничестве с компанией «Bromovsky & Schulz», Маркус построил второй автомобиль - «Second Marcus Car».

В 1872 году , американский изобретатель запатентовал двухцилиндровый двигатель внутреннего сгорания постоянного давления, работающий на керосине.
Брайтон назвал свой двигатель «Ready Motor».

Первый цилиндр выполнял функцию компрессора, нагнетавшего воздух в камеру сгорания, в которую непрерывно поступал и керосин. В камере сгорания смесь поджигалась и через золотниковый механизм поступало во второй - рабочий цилиндр. Существенным отличием от других двигателей, было то, что топливовоздушная смесь сгорала постепенно и при постоянном давлении.

Интересующиеся термодинамическими аспектами двигателя, могут почитать про «Цикл Брайтона» .

В 1878 году , шотландский инженер Сэр (в 1917 году посвящён в рыцари) разработал первый двухтактный двигатель с воспламенением сжатой смеси. Он запатентовал его в Англии в 1881 году.

Двигатель работал любопытным образом: в правый цилиндр подавался воздух и топливо, там оно смешивалось и эта смесь выталкивалась в левый цилиндр, где и происходило поджигание смеси от свечи. Происходило расширение, оба поршня опускались, из левого цилиндра (через левый патрубок) выбрасывались выхлопные газы, а в правый цилиндр всасывалась новая порция воздуха и топлива. Следуя по инерции поршни поднимались и цикл повторялся.

В 1879 году , построил вполне надежный бензиновый двухтактный двигатель и получил на него патент.

Однако настоящий гений Бенца проявился в том, что в последующих проектах он сумел совместить различные устройства (дроссель, зажигание с помощью искры с батареи, свеча зажигания, карбюратор, сцепление, КПП и радиатор) на своих изделиях, что в свою очередь стало стандартом для всего машиностроения.

В 1883 году, Бенц основал компанию «Benz & Cie» по производству газовых двигателей и в 1886 году запатентовал четырехтактный двигатель, который он использован на своих автомобилях.

Благодаря успеху компании «Benz & Cie», Бенц смог заняться проектированием безлошадных экипажей. Совместив опыт изготовления двигателей и давнишнее хобби - конструирование велосипедов, к 1886-му году он построил свой первый автомобиль и назвал его "Benz Patent Motorwagen ".


Конструкция сильно напоминает трехколёсный велосипед.

Одноцилиндровый четырёхтактный двигатель внутреннего сгорания рабочим объёмом 954 см3., установленный на "Benz Patent Motorwagen ".

Двигатель был оснащён большим маховиком (использовался не только для равномерного вращения, но и для запуска) , бензобаком на 4,5 л., карбюратором испарительного типа и золотниковым клапаном, через который топливо поступало в камеру сгорания. Воспламенение производилось свечой зажигания собственной конструкции Бенца, напряжение на которую подавалось от катушки Румкорфа .

Охлаждение было водяным, но не замкнутого цикла, а испарительным. Пар уходил в атмосферу, так что заправлять автомобиль приходилось не только бензином, но и водой.

Двигатель развивал мощность 0,9 л.с. при 400 об/мин и разгонял автомобиль до 16 км/ч.

Карл Бенц за «рулём» своего авто.

Чуть позже, в 1896 году, Карл Бенц изобрел оппозитный двигатель (или плоский двигатель) , в котором поршни достигают верхней мертвой точки в одно и то же время, тем самым уравновешивая друг друга.

Музей «Mercedes-Benz» в Штутгарте.

В 1882 году , английский инженер Джеймс Аткинсон придумал цикл Аткинсона и двигатель Аткинсона.

Двигатель Аткинсона - это по существу двигатель, работающий по четырёхтактному циклу Отто , но с измененным кривошипно-шатунным механизмом. Отличие заключалось в том, что в двигателе Аткинсона все четыре такта происходили за один оборот коленчатого вала.

Использование цикла Аткинсона в двигателе позволяло уменьшить потребление топлива и снизить уровень шума при работе за счёт меньшего давления при выпуске. Кроме того, в этом двигателе не требовалось редуктора для привода газораспределительного механизма, так как открытие клапанов приводил в движение коленчатый вал.

Не смотря на ряд преимуществ (включая обход патентов Отто) двигатель не получил широкого распространения из-за сложности изготовления и некоторых других недостатков.
Цикл Аткинсона позволяет получить лучшие экологические показатели и экономичность, но требует высоких оборотов. На малых оборотах выдаёт сравнительно малый момент и может заглохнуть.

Сейчас двигатель Аткинсона применяется на гибридных автомобилях «Toyota Prius» и «Lexus HS 250h».

В 1884 году , британский инженер Эдвард Батлер , на лондонской выставке велосипедов "Stanley Cycle Show " продемонстрировал чертежи трёхколёсного автомобиля с бензиновым двигателем внутреннего сгорания , а в 1885 году построил его и показал на той же выставке, назвав «Velocycle». Так же, Батлер был первым кто использовал слово бензин .

Патент на «Velocycle» был выдан в 1887 году.

На «Velocycle» был установлен одноцилиндровый, четырёхтактный бензиновый ДВС оснащенный катушкой зажигания, карбюратором, дросселем и жидкостным охлаждением. Двигатель развивал мощность около 5 л.с. при объёме 600 см3, и разгонял автомобиль до 16 км/ч.

На протяжении многих лет Батлер улучшал характеристики своего транспортного средства, но был лишен возможности его тестировать из-за "Закона Красного Флага " (издан в 1865 году) , согласно которому транспортные средства не должны были превышать скорость свыше 3 км/ч. Кроме того, в автомобиле должны были присутствовать три человека, один из которых должен был идти перед автомобилем с красным флагом (такие вот меры безопасности) .

В журнале «Английский Механик» от 1890 года, Батлер написал - «Власти запрещают использование автомобиля на дорогах, в следствии чего я отказываюсь от дальнейшего развития.»

Из-за отсутствия общественного интереса к автомобилю, Батлер разобрал его на металлолом, и продал патентные права Гарри Дж. Лоусону (производителю велосипедов) , который продолжил производство двигателя для использования на катерах.

Сам же Батлер перешёл к созданию стационарных и судовых двигателей.

В 1891 году , Герберт Эйкройд Стюарт в сотрудничестве с компанией "Richard Hornsby and Sons " построил двигатель «Hornsby-Akroyd», в котором топливо (керосин) под давлением впрыскивалось в дополнительную камеру (из-за формы её называли «горячий шарик») , установленную на головке блока цилиндров и соединённую с камерой сгорания узким проходом. Топливо воспламенялось от горячих стенок дополнительной камеры и устремлялось в камеру сгорания.


1. Дополнительная камера (горячий шарик) .
2. Цилиндр.
3. Поршень.
4. Картер.

Для запуска двигателя использовалась паяльная лампа, которой нагревали дополнительную камеру (после запуска она подогревалась выхлопными газами) . Из-за этого двигатель «Hornsby-Akroyd», который был предшественником дизельного двигателя сконструированного Рудольфом Дизелем , часто называли «полу-дизелем». Однако спустя год Эйкройд усовершенствовал свой двигатель добавив к нему «водяную рубашку» (патент от 1892 г.), что позволило повысить температуру в камере сгорания за счёт увеличения степени сжатия, и теперь уже не было необходимости в дополнительном источнике нагрева.

В 1893 году , Рудольф Дизель получил патенты на тепловой двигатель и модифицированный "цикл Карно " под названием «Метод и аппарат для преобразования высокой температуры в работу».

В 1897 году, на «Аугсбургском машиностроительном заводе» (с 1904 года MAN) , при финансовом участии компаний Фридриха Круппа и братьев Зульцер, был создан первый функционирующий дизель Рудольфа Дизеля
Мощность двигателя составляла 20 лошадиных сил при 172 оборотах в минуту, КПД 26,2 % при весе пять тонн.
Это намного превосходило существующие двигатели Отто с КПД 20 % и судовые паровые турбины с КПД 12 %, что вызвало живейший интерес промышленности в разных странах.

Двигатель Дизеля был четырёхтактным. Изобретатель установил, что КПД двигателя внутреннего сгорания повышается от увеличения степени сжатия горючей смеси. Но сильно сжимать горючую смесь нельзя, потому что тогда повышаются давление и температура и она самовоспламеняется раньше времени. Поэтому Дизель решил сжимать не горючую смесь, а чистый воздух и концу сжатия впрыскивать топливо в цилиндр под сильным давлением.
Так как температура сжатого воздуха достигала 600-650 °C, топливо самовоспламенялось, и газы, расширяясь, двигали поршень. Таким образом Дизелю удалось значительно повысить КПД двигателя, избавиться от системы зажигания, а вместо карбюратора использовать топливный насос высокого давления
В 1933 году Эллинг пророчески писал: «Когда я начал работать над газовой турбиной в 1882 году, я был твёрдо уверен в том, что моё изобретение будет востребовано в авиастроении.»

К сожалению, Эллинг умер в 1949 году, так и не дожив до наступления эры турбореактивной авиации.

Единственное фото, которое удалось найти.

Возможно кто-то найдёт что-либо об этом человеке в "Норвежском музее техники ".

В 1903 году , Константин Эдуардович Циолковский , в журнале «Научное обозрение» опубликовал статью «Исследование мировых пространств реактивными приборами », где впервые доказал, что аппаратом, способным совершить космический полёт, является ракета. В статье был предложен и первый проект ракеты дальнего действия. Корпус её представлял собой продолговатую металлическую камеру, снабжённую жидкостным реактивным двигателем (который тоже является двигателем внутреннего сгорания) . В качестве горючего и окислителя он предлагал использовать соответственно жидкие водород и кислород.

Наверное на этой ракетно-космической ноте и стоит закончить историческую часть, так как наступил 20-ый век и Двигатели Внутреннего Сгорания стали производиться повсеместно.

Философское послесловие…

К.Э. Циолковский полагал, что в обозримом будущем люди научатся жить если не вечно, то по крайней мере очень долго. В связи с этим на Земле будет мало места (ресурсов) и потребуются корабли для переселения на другие планеты. К сожалению, что-то в этом мире пошло не так, и с помощью первых ракет люди решили просто уничтожать себе подобных...

Спасибо всем кто прочитал.

Все права защищены © 2016
Любое использование материалов допускается только с указанием активной ссылки на источник.

Любой автомобилист сталкивался с двигателем внутреннего сгорания. Этот элемент установлен на всех старых и современных автомобилях. Конечно, по конструктивным особенностям они могут отличаться друг от друга, но почти все работают на одном принципе - топливо и сжатие.

Статья расскажет все, что необходимо знать о двигателе внутреннего сгорания, характеристиках, конструктивных особенностях, а также поведает о некоторых нюансах эксплуатации и технического обслуживания.

Что такое ДВС

ДВС - двигатель внутреннего сгорания. Именно так, и ни как иначе, расшифровывается данная аббревиатура. Ее часто можно встретить на разных автомобильных сайтах, а также форумах, но как показывает практика, не все люди знают этому расшифровку.

Что такое ДВС в автомобиле? - Это силовой агрегат, который приводит в действие движение колес. Двигатель внутреннего сгорания - это сердце любого автомобиля. Без этой конструктивной детали машину нельзя назвать авто. Именно этот агрегат приводит все в действие, все остальные механизмы, а также электронику.

Мотор состоит из ряда конструктивных элементов, которые могут отличаться в зависимости от числа цилиндров, системы впрыска и других немаловажных элементов. У каждого производителя свои нормы и стандарты силового агрегата, но все они между собой похожи.

История происхождения

История создания двигателя внутреннего сгорания началась более 300 лет назад, когда первый примитивный чертеж сделал Леонардо ДаВинчи. Именно его разработка положила основу созданию двигателю внутреннего сгорания, устройство которого можно наблюдать на любой дороге.

В 1861 году по чертежу ДаВинчи был сделан первый проект двухтактного мотора. Тогда еще не шла речь об установке силового агрегата на автомобильный проект, хотя паровыми ДВС уже активно пользовались на железной дороге.

Первым, кто разработал устройство автомобиля, и внедрим массово двигатели внутреннего сгорания - был легендарный Генри Форд, чьи автомобили до этого времени, пользуются огромной популярностью. Он же первый выпустил книгу «Двигатель: его устройство и схема работы».

Генри Форд был первым, кто начал вычислять такой полезный коэффициент, как КПД двигателя внутреннего сгорания. Этот легендарный человек считается прародителем автомобилестроения, а также части авиапромышленности.

В современном мире, нашлось широкое применение ДВС. Они оснащаются не только в автомобили, но авиация, а благодаря простоте конструкции и обслуживания устанавливается на многие виды транспортных средств и как электрогенераторы переменного тока.

Принцип работы двигателя

Как работает двигатель автомобиля? - Этим вопросом задаются многие автомобилисты. Постараемся дать максимально полный и сжатый ответ на этот вопрос. Принцип работы двигателя внутреннего сгорания основан на двух факторах: впрыске и моменте сжатия. Именно основываясь на этих действиях мотор, приводит все в действие.

Если рассматривать, как работает двигатель внутреннего сгорания, то стоит понимать, что существуют такты, которые разделяют агрегаты на однотактный, двухтактный и четырехтактный. В зависимости от того, куда устанавливается ДВС, так и различают такты.

Современные автомобильные двигатели оснащаются четырехтактными «сердцами», которые идеально сбалансированные и отлично работают. А вот однотактные и двухтактные моторы обычно устанавливаются на мопеды, мотоциклы и прочую технику.

Итак, рассмотрим ДВС и его принцип работы, на примере бензинового двигателя:

  1. Топливо попадает в камеру сгорания, через систему впрыска.
  2. Свечи зажигания дают искру и топливно-воздушная смесь воспламеняется.
  3. Поршень, который находится в цилиндре, уходит вниз под давлением, чем приводит в движение коленчатый вал.
  4. Коленвал передает движение через сцепление и коробку передач на ведущие валы, которые в свою очередь, приводят в действия колеса.

Как устроен ДВС

Устройство двигателя автомобиля можно рассматривать по тактам работы основного силового агрегата. Такты - это своего рода циклы двигателей внутреннего сгорания, без которых невозможно обойтись. Рассмотрим, принцип работы двигателя автомобиля со стороны тактов:

  1. Впрыск. Поршень делает движение вниз, при этом открывается впускной клапан головки блока соответствующего цилиндра и камера сгорания наполняется воздушно-топливной смесью.
  2. Сжатие. Поршень движется в ВТМ и в самой верхней точке происходит искра, которая влечет за собой воспламенение смеси, которое находится под давлением.
  3. Рабочий ход. Поршень движется в НТМ под давлением воспламененной смеси и образовавшимся выхлопным газам.
  4. Выпуск. Поршень движется вверх, открывается выпускной клапан и он выталкивает выхлопные газы с камеры сгорания.

Все четыре такта еще называются - действительные циклы ДВС. Таким образом, работает стандартный бензиновый четырехтактный мотор. Есть еще пятитактный роторный двигатель и шеститактные силовые агрегаты нового поколения, но о технических характеристиках и режимы работы двигателя такой конструкции будет рассмотрено в других статьях нашего портала.

Общее устройство ДВС

Устройство двигателя внутреннего сгорания достаточно простое, тем, кто уже сталкивался с их ремонтом, и достаточно тяжелое тому, кто еще не имеет представление об этом агрегате. Силовой агрегат включает в свое строение несколько немаловажных систем. Рассмотрим, общее устройство двигателя:

  1. Систему впрыска.
  2. Блок цилиндров.
  3. Головку блока.
  4. Газораспределительный механизм.
  5. Систему смазки.
  6. Систему охлаждения.
  7. Механизм выхлопа отработанных газов.
  8. Электронную часть двигателя.

Все эти элементы определяют устройство и принцип работы ДВС. Далее стоит рассмотреть, из чего состоит двигатель автомобиля, а именно сам силовой агрегат в сборе:

  1. Коленчатый вал - вращается в самом сердце блока цилиндров. Приводит в работу поршневую систему. Он купается в масле, поэтому расположен ближе к поддону картера.
  2. Поршневая система (поршни, шатуны, пальцы, втулки, вкладыши, бугеля и маслосъемные кольца).
  3. Головка блока цилиндров (клапаны, сальники, распределительный вал и другие элементы ГРМ).
  4. Масляный насос - циркулирует смазочную жидкость по системе.
  5. Водяной насос (помпа) - обеспечивает циркуляцию охлаждающей жидкости.
  6. Комплект газораспределительного механизма (ремень, ролики, шкивы) - обеспечивает правильность тактности. Ни один двигатель внутреннего сгорания, принцип работы которого основан на тактах, не может без этого элемента.
  7. Свечи зажигания обеспечивают воспламенение смеси в камере сгорания.
  8. Впускной и выпускной коллектор - принцип действия их основан на впуске топливной смеси и выпуску отработанных газов.

Общее устройство и работа двигателя внутреннего сгорания достаточно простая и взаимосвязанная. Если один из элементов вышел со строя или отсутствует, то эксплуатация автомобильных двигателей будет невозможна.

Классификация двигателей внутреннего сгорания

Автомобильные моторы делятся на несколько видов и классификаций, в зависимости от устройства и работы ДВС. Классификация ДВС за международными стандартами:

  1. За видом впрыска топливной смеси:
    • Те, которые работают на жидких топливах (бензин, керосин, дизельное топливо).
    • Те, что работают на газообразных топливах.
    • Те, что работают на альтернативных источниках (электричество).
  1. Состоящий за циклами работы:
    • 2хтактные
    • 4хтактные
  1. По способу смесеобразования:
    • с внешним смесеобразованием (карбюраторные и газовые силовые агрегаты),
    • с внутренним смесеобразованием (дизель, турбодизель, непосредственный впрыск)
  1. По способу зажигания рабочей смеси:
    • с принудительным зажиганием смеси (карбюраторные, двигатели с непосредственным впрыском легких топлив);
    • с воспламенением от сжатия (дизели).
  1. По числу и расположению цилиндров:
    • одно-, двух-, трех- и т.д. цилиндровые;
    • однорядные, двухрядные
  1. По способу охлаждения цилиндров:
    • с жидкостным охлаждением;
    • с воздушным охлаждением.

Принципы эксплуатации

Автомобильные двигатели эксплуатируются с разным ресурсом. Самые простые двигатели могут иметь технический ресурс 150000 км пробега при правильном техническом обслуживании. А вот некоторые современные дизельные двигатели, которые оснащаются на грузовики, могут выхаживать до 2 миллионов.

Устраивая конструкцию мотора, автопроизводители обычно делают упорство на надежность и технические характеристики силовых агрегатов. Учитывая современную тенденцию, многие автомобильные моторы рассчитаны на небольшой, но надежные срок эксплуатации.

Так, средняя эксплуатация силового агрегата легкового транспортного средства составляет 250 000 км пробега. А дальше, существует несколько вариантов: утилизация, контрактный двигатель или капитальный ремонт.

Техническое обслуживание

Немаловажным фактором в эксплуатации остается техническое обслуживание двигателя. Многие автомобилисты не понимают этого понятия и опираются на опыт автосервисов. Что стоит понимать под обслуживание двигателя автомобиля:

  1. Замена моторного масла в соответствии с техническими картами и рекомендациями завода изготовителя. Конечно, каждый автопроизводитель ставит свои рамки замены смазочной жидкости, но эксперты рекомендуют менять смазку один раз на 10000 км - для бензиновых ДВС, 12-15 тыс. км - для дизеля и 7000-9000 км - для транспортного средства, работавшим на газу.
  2. Замена фильтров масла. Проводится при каждом ТО по замене масла.
  3. Замена топливных и воздушных фильтров - один раз на 20 000 км пробега.
  4. Чистка форсунок - каждые 30 000 км.
  5. Замена газораспределительного механизма - один раз на 40-50 тыс. км пробега или за необходимостью.
  6. Проверка всех остальных систем проводится при каждом ТО, вне зависимости от давности замены элементов.

При своевременном и полном техническом обслуживании увеличивается ресурс использования двигателя транспортного средства.

Доработка моторов

Тюнинг - доработка двигателя внутреннего сгорания по увеличению некоторых показателей, таких как мощность, динами, расход или другое. Это движение набрало всемирную популярность в начале 2000-х годов. Многие автолюбители начали самостоятельно экспериментировать со своими силовыми агрегатами и выкладывать фотоинструкции в глобальную сеть.

Сейчас можно встретить массу информации по проведенным доработками. Конечно, не весь этот тюнинг одинаково хорошо влияет на состояние силового агрегата. Так, стоит понимать, что разгон мощности без полного анализа и тюнинга может «угробить» ДВС, а коэффициент износа при этом увеличивается в несколько раз.

На основании этого, прежде чем проводить тюнинг мотора стоит все тщательно проанализировать, дабы не «попасть» на новый силовой агрегат» или, что еще хуже, не попасть в аварию, которая может стать для многих первой и последней.

Вывод

Конструкция и особенности современных моторов постоянно совершенствуются. Так, весь мир уже невозможно представить без выхлопных газов, машин и автосервисов. Работающий ДВС узнать легко по характерному звуку. Принцип работы и устройство двигателя внутреннего сгорания достаточно простое, если разобраться один раз.

А вот, что качается технического обслуживания, то здесь поможет смотреть техническую документацию. Но, если человек не уверен, что он может провести ТО или ремонт автомобиля своими руками, то стоит обратиться в автосервис.

Двигатель внутреннего сгорания на жидком топливе, разработанный и впервые применённый на практике во второй половине 19-го века, являлся вторым в истории, после парового двигателя, примером создания агрегата, преобразующего энергию в полезную работу. Без этого изобретения невозможно себе представить современную цивилизацию, ведь транспортные средства с ДВС различного типа широко задействованы в любой отрасли, обеспечивающей существование человека.

Транспорт, приводимый в действие двигателем внутреннего сгорания, играет решающую роль в приобретающей все большее и большее значение на фоне глобализационных процессов всемирной логистической системе.

Все современные транспортные средства можно разделить на три больших группы, в зависимости от типа используемого двигателя. Первая группа ТС использует электродвигатели. Сюда входят и привычный городской общественный транспорт – троллейбусы и трамваи, и электропоезда с электромобилями, и огромные суда и корабли, использующие атомную энергию – ведь и современные ледоколы, и атомные субмарины, и авианосцы стран НАТО используют электродвигатели. Вторая группа – это техника, оснащенная реактивными двигателями.

Разумеется, такой тип двигателей используется преимущественно в авиации. Наиболее многочисленной, привычной и значимой является третья группа транспортных средств, которая использует двигатели внутреннего сгорания. Это – наибольшая и по количеству, и по разнообразию, и по влиянию на хозяйственную жизнь человека группа. Принцип работы ДВС одинаков для любых транспортных средств, оснащённых таким двигателем. В чем он заключается?

Как известно, энергия не берется ниоткуда и не уходит в никуда. Принцип работы двигателя автомобиля в полной мере основывается на этом постулате закона сохранения энергии.

Максимально обобщенно можно сказать, что для выполнения полезной работы используется энергия молекулярных связей жидкого топлива, сжигаемого в процессе работы двигателя.

Распространению ДВС на жидком топливе способствовали несколько уникальных свойств самого топлива. Это:

  • высокая потенциальная энергия молекулярных связей используемых в качестве топлива смеси легких углеводородов «например, бензина»
  • достаточно простой и безопасный, в сравнении, например, с атомной энергией, способ ее высвобождения
  • относительная распространенность легких углеводородов на нашей планете
  • природное агрегатное состояние такого топлива, позволяющее удобно хранить и транспортировать его.

Еще одним важнейшим фактором является то, что в качестве окислителя, необходимого для процесса высвобождения энергии, выступает кислород, их которого более чем на 20 процентов состоит атмосфера. Это избавляет от необходимости возить не только запас топлива, но и запас катализатора.

В идеальном случае вступить в реакцию должны все молекулы определённого объёма топлива и все молекулы определённого объёма кислорода. Для бензина эти показатели соотносятся как 1 к 14,7, т.е., для сгорания килограмма топлива необходимо почти 15 кг кислорода. Однако такой процесс, называемый стехиометрическим, на практике нереализуем. В действительности всегда остаётся какая-то часть топлива, не соединившаяся с кислородом во время протекания реакции.

Более того, для определённых режимов работы ДВС стехиометрия даже вредна.

Теперь, когда химические процесс в общих чертах понятны, стоит рассмотреть механику процесса превращения энергии топлива в полезную работу, на примере четырёхтактного ДВС, работающего по так называемому циклу Отто.

Наиболее известным и, что называется, классическим циклом работу является запатентованный еще в 1876 году Николаусом Отто процесс работы двигателя, состоящий из четырех частей. «тактов, отсюда и четрыехтактные ДВС». Первый такт – создание поршнем разрежения в цилиндре собственным перемещением под воздействием веса. В результате цилиндр заполняется смесью кислорода и паров бензина «природа не терпит пустоты». Продолжающий движение поршень сдавливает смесь – получаем второй такт. На третьем такте смесь воспламеняется «Отто применял обычную горелку, сейчас за это ответственна свеча зажигания».

Воспламенение смеси создаёт выделение большого количества газа, который давит на поршень и заставляет его подниматься – выполнять полезную работу. Четвёртый такт – открытие выпускного клапана и вытеснение продуктов сгорания возвращающимся поршнем.

Таким образом, только запуск двигателя требует воздействия извне – прокручивания коленвала, соединённого с поршнем. Сейчас это делается с помощью силы электричества, а на первых автомобилях коленвал приходилось проворачивать вручную «этот же принцип используется и в автомобилях, в которых предусмотрен принудительный ручной пуск двигателя».

Со времени выпуска первых автомобилей немало инженеров пытались изобрести новый цикл работы ДВС. Вначале это было связано с действием патента, которое многим хотелось обойти.

В результате уже в начале прошлого века был создан цикл Аткинсона, который изменил конструкцию двигателя таким образом, чтобы все движения поршня совершались за один оборот коленвала. Это позволило повысить КПД двигателя, но уменьшило его мощность. Кроме того, двигатель, работающий по такому циклу, не нуждается в отдельном распределительном вале и редукторе. Однако этот двигатель не получил распространения из-за снижения мощности агрегата и достаточно сложной конструкции.

Вместо него на современных атвомобилях зачастую используется цикл Миллера.

Если Аткинсон уменьшил такт сжатия, увеличив КПД, но изрядно усложнив работу двигателя, то Миллер предложил уменьшить такт впуска. Это позволило снизить фактическое время сжатия смеси без уменьшения ее геометрического сжатия. Таким образом, КПД каждого цикла работы ДВС увеличивается, за счет чего снижается расход топлива, сжигаемого «впустую».

Однако большинство двигателей работают по циклу Отто, так что более подробно необходимо рассмотреть именно его.

Даже наиболее простой вариант ДВС включает четырнадцать важнейших элементов, необходимых для его работы. Каждый элемент имеет определённые функции.

Так, цилиндр выполняет двоякую роль — в нем происходит активация воздушной смеси и двигается поршень. В части, называемой камерой сгорания, установлена свеча, и два клапана, один из которых перекрывает поступление топлива, другой – выпуск отработанных газов.

Свеча – устройство, обеспечивающее поджиг смеси с необходимой цикличностью. По сути, представляет собой устройство для получения достаточно мощной электрической дуги на короткий промежуток времени.

Поршень перемещается в цилиндре под действием расширяющихся газов или от воздействия коленвала, переданного через кривошипно-шатунный механизм. В первом случае поршень превращает энергию сгорания топлива в механическую работу, во втором – сжимает смесь для лучшего возгорания либо создает давление для удаления отработанных остатков смеси из цилиндра.

Кривошипно-шатунный механизм передаёт момент от поршня к валу и наоборот. Коленчатый вал благодаря своей конструкции преображает поступательное «вверх-вниз» движение поршня во вращательное.

Впускной канал, в котором располагается впускной клапан, обеспечивает попадание смеси в цилиндр. Клапан обеспечивает цикличность поступления смеси.

Выпускной клапан, соответственно, удаляет накопившиеся продукты сгорания смеси. Для обеспечения нормальной работы двигателя в момент нагнетания давления и поджога смеси он закрыт.

Работа бензинового ДВС. Подробный разбор

При такте всасывания поршень опускается вниз. Одновременно открывается впускной клапан, и в цилиндр подаётся топливо. Таким образом, в цилиндре оказывается топливовоздушная смесь. В определённых типах бензиновых двигателей эта смесь приготавливается в специальном устройстве – карбюраторе, в других смешение происходит непосредственно в цилиндре.

Далее поршень начинает подниматься. Одновременно впускной клапан закрывается, что обеспечивает создание достаточно большого давления внутри цилиндра. При достижении поршнем крайней верхней точки вся топливно-воздушная смесь оказывается сжатой в части цилиндра, называемой камерой сгорания. В этот момент свеча дает электрическую искру, и смесь воспламеняется.

В результате сгорания смеси выделяется большое количество газов, которые, стремясь заполнить собой весь предоставленный объем, давят на поршень, заставляя его опускаться. Эта работа поршня передается посредством кривошипно-шатунного механизма на вал, который начинает вращаться и вращать привод колес автомобиля.

Как только поршень завершает свое движение вниз, открывается клапан выпускного коллектора.

Оставшиеся газы устремляются туда, так как на них давит поршень, идущий вверх под воздействием вала. Цикл закончен, далее поршень снова опускается вниз, начиная новый цикл.

Как видно, полезную работу выполняет лишь одна фаза цикла. Остальные фазы — это работа двигателя «на самого себя». Даже такой положение вещей делает двигатель внутреннего сгорания одной из наиболее удачных по КПД систем, внедренных в производство. В то же время, возможность уменьшения «холостых» в смысле КПД циклов приводит к появлению новых, более экономичных систем. Кроме того, разрабатываются и ограниченно внедряются двигатели, которые вообще лишены поршневой системы. Например, некоторые японские автомобили оснащены роторными двигателями, имеющими более высокий коэффициент полезного действия.

В то же время, такие двигатели имеют ряд недостатков, связанных, в основном, с дороговизной производства и сложностью обслуживания таких моторов.

Система питания

Для того чтобы поступающая в камеру сгорания горючая смесь правильно сжигалась и обеспечивала бесперебойную работу двигателя, она должна вводится четко отмеренными порциями и быть соответствующим образом подготовлена. Для этой цели служит топливная система, важнейшими частями которой являются бензобак, топливопровод, топливные насосы, устройство для смешивания топлива и воздуха, коллектор, различные фильтры и датчики.

Понятно, что назначение бензобака – хранить необходимое количество топлива. Топливо воды используются в качестве магистралей для перекачки с помощью бензинового насоса, фильтры бензина и воздуха нужны, чтобы не допустить засорения тонких коллекторов, клапанов и топливоводов.

Подробнее стоит остановиться на работе карбюратора. Несмотря на то, что автомобили с такими устройствами больше не выпускаются, немало машин с карбюраторным типом двигателя до сих пор эксплуатируется во многих странах мира. Карбюратор смешивает топливо с воздухом следующим образом.

В поплавковой камере поддерживается постоянный уровень топлива и давления благодаря балансировочному отверстию, стравливающему лишний воздух,и поплавку, открывающему клапан топливовода, как только уровень топлива в камере карбюратора снижается. Карбюратор через жиклер и диффузор связан с цилиндром. Когда давление в цилиндре снижается, точно отмеренное благодаря жиклеру количество топлива устремляется в диффузор воздушной камеры.

Тут, за счет очень маленького диаметра отверстия, оно под большим давлением проходит в цилиндр, бензин смешивается с атмосферным воздухом, прошедшим через фильтр, и образованная смесь попадает в камеру сгорания.

Проблема карбюраторных систем – в невозможности максимально точно отмерить количество топлива и количество воздуха, попадающие в цилиндр. Поэтому все современные автомобили оснащены системой впрыска, называемой также инжекторной.

В инжекторном двигателе вместо карбюратора впрыск осуществляется форсункой или форсунками – специальным механическим распылителем, важнейшей частью которого является электромагнитный клапан. Эти устройства, особенно работая в паре со специальными вычислительными микрочипами, позволяют впрыскивать точно отмеренное количество топлива в необходимый момент. В результате двигатель работает ровнее, запускается легче, потребляет меньше топлива.

Механизм газораспределения

Понятно, каким образом карбюратор подготавливает горючую смесь из бензина и воздуха. Но как работают клапаны, обеспечивающие своевременную подачу этой смеси в цилиндр? За это ответственен механизм газораспределения. Именно он выполняет своевременное открытие и закрытие клапанов, а также обеспечивает необходимую длительность и высоту их подъема.

Именно эти три параметра и являются в совокупности фазами газораспределения.

Современные двигатели имеют специальное устройство для изменения этих фаз, называемое фазовращатель двс принцип работы которого основан на повороте в случае необходимости распредвала. Эта муфта при увеличении количества впрыскиваемого топлива поворачивает распределительный вал на определённый угол по ходу вращения. Такой изменение его положения приводит к тому, что впускные клапаны открываются раньше, и камеры сгорания наполняются смесью лучше, компенсируя постоянно возрастающую потребность в мощности. На наиболее технически передовых моделях стоит несколько таких муфт, они управляются достаточно сложной электроникой и могут регулировать не только частоту открытия клапана, но и его ход, что отлично сказывается на работе двигателя при максимальных оборотах.

Принцип работы системы охлаждения двигателя

Разумеется, далеко не вся выделяемая энергия связей молекул топлива превращается в полезную работу. Основная ее часть теряется, превращаясь в тепло, да и трение деталей ДВС также создает тепловую энергию. Лишнее тепло необходимо отводить. Именно этой цели служит система охлаждения.

Разделяют воздушную систему, жидкостную и комбинированную. Наиболее распространена жидкостная система охлаждения, хотя встречаются автомобили и с воздушной – ее использовали для упрощения конструкции и удешевления бюджетных машин, либо для уменьшения веса, если речь шла о спорткарах.

Основные элементы системы представлены теплообменником, радиатором, центробежным насосом, расширительным бачком и термостатом. Кроме того, в систему охлаждения входят масляный радиатор, вентилятор радиатора, датчик температуры охлаждающей жидкости.

Жидкость циркулирует через теплообменник под воздействием насоса, снимая температуру с двигателя. Пока двигатель не нагреется, специальный клапан закрывает радиатор – это называется «малый круг» движения. Такая работа системы позволяет быстро прогреть двигатель.

Как только температура поднимается до рабочей, термодатчик дает команду на открытие клапана, и охлаждающая жидкость начинает двигаться через радиатор. Тонки трубки этого агрегата обдуваются стильным потоком встречного ветра, охлаждая таким образом жидкость, которая опять поступает в коллектор, начиная круг охлаждения заново.

Если воздействия набегающего воздуха недостаточно для нормального охлаждения – автомобиль работает со значительной нагрузкой, движется с малой скоростью или стоит очень жаркая погода, включается вентилятор охлаждения. Он обдувает радиатор, принудительно охлаждая рабочую жидкость.

Машины, оборудованные турбонаддувом, имеют два контура охлаждения. Один – для охлаждения непосредственно ДВС, второй – для снятия лишнего тепла с турбины.

Электрика

Первые автомобили обходились минимумом электрики. В современных машинах появляется все больше и больше электрических цепей. Электроэнергию потребляют система подачи топлива, зажигание, система охлаждения и отопления, освещение. При наличии немало энергии потребляет система кондиционирования, управления двигателем, электронные системы обеспечения безопасности. Такие агрегаты, как система запуска и свечи накаливания потребляют энергию кратковременно, но в больших количествах.

Для обеспечения всех этих элементов необходимой электроэнергией используются источники тока, электрическая проводка, элементы управления и блоки предохранителей.

Источники тока автомобиля – аккумуляторная батарея, работающая в паре с генератором. Когда двигатель работает, привод от вала крутит генератор, вырабатывающий необходимую энергию

Генератор работает, преобразовывая энергию вращения вала в электрическую энергию, используя принципы электромагнитной индукции. Для того, чтобы осуществить пуск ДВС, используется энергия аккумулятора.

Во время запуска основным потребителем энергии является стартер. Это устройство является двигателем постоянного тока, предназначенным для прокрутки коленчатого вала, обеспечивающей начало цикла работы ДВС. Принцип работы двигателя постоянного тока основывается на взаимодействии, возникающем между магнитным полем, образующимся в статоре, и токе, протекающем в роторе. Эта сила влияет на ротор, который начинает вращаться, причем его вращение совпадает с вращением магнитного поля, характерного для статора. Таким образом электрическая энергия преобразовывается в механическую, а стартер начинает раскручивать вал двигателя. Как только двигатель запускается и начинает работать генератор, аккумулятор перестает отдавать энергию и начинает ее накапливать. Если генератор не работает или по какой-то причине его мощности недостаточно, аккумулятор продолжает отдавать энергию и разряжаться.

Такой тип двигателя тоже является ДВС, но имеет отличительные особенности, позволяющие резко отделять двигатели, работающие по принципу, изобретенному Рудольфом Дизелем, от прочих ДВС, работающих на «легком» топливе вроде бензина «в автомобилистике» или керосина «в авиации».

Различие в используемом топливе предопределяют различия конструкции. Дело в том, что «солярку» относительно сложно поджечь и добиться ее мгновенного сгорания в обычных условиях, поэтому способ воспламенения от свечи для этого топлива не подходит. Воспламенения дизеля осуществляется за счет его контакта с разогретым до очень большой температуры воздухом. С этой целью используется свойство газов нагреваться при сжатии. Поэтому поршень, работающий на дизельном ДВС, сжимает не топливо, а воздух. Когда степень сжатия доходит до максимума, а сам поршень – до крайней верхней точки, стоящая вместо свечи форсунка «электромагнитный насос» впрыскивает дисперсно распыленное топливо. Оно взаимодействует с горячим кислородом и воспламеняется. Далее происходит работа, характерная и для бензинового ДВС.

При этом мощность ДВС меняется не пропорцией смеси воздуха и топлива, как в бензиновых моторах, а исключительно количеством впрыскиваемого дизеля, в то время как количество воздуха постоянно и не меняется. При этом принцип действия современного бензинового агрегата, оснащенного форсункой, абсолютно не схож с принципом работы дизельного ДВС.

Работающие с бензином электромеханические распылительные насосы предназначены, прежде всего, для более точного отмеривания впрыскиваемого топлива, и взаимодействуют со свечей зажигания. В чем эти два типа ДВС схожи — так это в повышенной требовательности к качеству топлива.

Так как давление воздуха, создаваемое работой поршня дизельного мотора, значительно выше давления, оказываемого сжатой воздушно-бензиновой смесью, такой двигатель более требователен к зазорам между поршнем и стенками цилиндра. К тому же, дизельный двигатель труднее запустить зимой, так как «солярка» под воздействием низких температурных показателей густеет, и форсунка не может достаточно качественно распылить ее.

И современный бензиновый мотор, и его дизельный «родственник» крайне неохотно работают на бензине «ДТ» несоответствующего качества, и даже кратковременное его применение чревато серьезными проблемами с топливной системой.

Современные двигатели внутреннего сгорания – наиболее эффективные устройства перехода тепловой энергии в механическую. Несмотря на то, что большая часть энергии тратится не на непосредственно полезную работу, а на поддержание цикла самого двигателя, человечество пока не научилось массово производить устройства, которые были бы практичнее, мощнее, экономичнее и удобнее, чем ДВС. Вместе с тем, удорожание углеводородных энергоносителей и забота об окружающей среде заставляют искать новые варианты двигателей для легковых автомобилей и общественного транспорта. Наиболее перспективными на данный момент выглядит использование автономных, оснащенных батареями большой емкости, электрических двигателей, КПД которых намного выше, и гибридов таких двигателей с бензиновыми вариантами. Ведь обязательно настанет время, когда использовать углеводороды для приведения в движение личного автотранспорта станет абсолютно невыгодно, и ДВС займут место на музейных полках, как паровозные двигатели – полвека назад.

Двигателем внутреннего сгорания (ДВС) называют двигатель, в котором сгорание топлива происходит непосредственно внутри рабочей камеры. Именно такие агрегаты широко применяются в автомобильной индустрии, обеспечивая преобразование тепловой энергии от сгорания топлива в механическую силу.

Способ осуществления рабочего цикла может происходить в один такт, или в два такта. Поэтому различают двухтактные и четырехтактные ДВС. Тактом называется ход поршня между двумя мертвыми точками, с поворотом коленчатого вала на 180 градусов.

Принцип работы

Принципы работы каждого из типов двигателей несколько отличаются. В двухтактном моторе за один оборот происходит завершение рабочего цикла за два этапа – за счет сжатия и расширения. Клапаны в таком устройстве отсутствуют, а их функцию выполняет поршень. Его перемещение обеспечивает открытие и закрытие продувочных окон.

Рабочий процесс в четырехтактном моторе происходит за четыре этапа. При этом к сжатию и расширению добавляются такие процессы, как впуск на первом и выпуск на четвертом этапах, соответственно.

Главным различием таких моторов являются отличные механизмы газообмена, т.е. подача топлива в цилиндры и отвод отработанных газов. В конструкцию четырехтактных агрегатов включен газораспределительный механизм, обеспечивающий открытие и закрытие клапанов в определенные моменты времени. В двухтактных моторах цилиндры опорожняются и заполняются в моменты тактов сжатия и расширения.

Видео: Устройство и как работает двигатель внутреннего сгорания

Общее устройство ДВС

По типу преобразования тепловой энергии все двигатели можно разделить на такие виды:

  • Поршневые. В таких агрегатах сгорание топлива происходит в цилиндрах, а благодаря возвратно-поступательному движению поршня за счет кривошипно-шатунного механизма тепловая энергия преобразуется в механическую;
  • Роторно-поршневые. Энергия преобразовывается при помощи вращения ротора со специальным профилем за счет рабочих газов;
  • Газотурбинные. В таких двигателях превращение энергии обеспечивает ротор с клиновидными лопатками.

Самым популярным и востребованным среди всех видов агрегатов является поршневой ДВС, за счет своей универсальности, способности к быстрому запуску и возможностью работы с различными видами горючего.

Общее устройство ДВС включает корпус агрегата, а также два типа механизмов – кривошипно-шатунный и газораспределительный. Помимо этого он содержит ряд систем – питания, зажигания, пуска, охлаждения и смазки. Все перечисленные системы состоят из определенных узлов и механизмов, а также необходимых коммуникационных элементов.

Важно! Только благодаря слаженному выполнению механизмами и системами своих функций обеспечивается бесперебойная работа ДВС.

Кривошипно-шатунный механизм

Циклическое поступательное движение поршня, описываемое им при перемещении в цилиндре, должно быть преобразовано во вращательное движение коленчатого вала. Именно это действие и обеспечивается благодаря кривошипно-шатунному механизму (КШМ).

В конструкцию такого механизма входят подвижные составляющие – поршни, поршневые кольца, пальцы, шатуны, маховик и коленчатый вал. Также КШМ включает и неподвижные элементы – блок цилиндров и прокладка, головка блока цилиндров, цилиндры, картер, поддон. Кроме того, устройство включает и различные элементы креплений, крепежные и шатунные подшипники.

Газораспределительный механизм

Благодаря газораспределительному механизму (ГРМ) своевременная подача в цилиндры в зависимости от типа ДВС воздуха или топливно-воздушной смеси, а также выпуска в систему выхлопа отработанных газов.

Интересно! Благодаря своевременному открытию или закрытию клапанов ГРМ обеспечивается бесперебойная работа механизма.

В состав конструкции ГРМ входят такие узлы и механизмы:

  • Распредвал. Чугунный или стальной элемент, который открывает или закрывает клапаны.
  • Толкатели. Обеспечивают передачу усилий на клапаны от кулачков.
  • Впускные и выпускные клапаны. Способствуют подачи смеси в камеру, а также удаляют отработанные газы. В зависимости от диаметра головки различаются впускные и выпускные клапаны. Кроме того головка впускного клапана – имеет хромированное покрытие, а головка выпускного изготовлена из жаропрочной стали.
  • Штанги. Благодаря которым происходит передача усилия от толкателей к штангам.
  • Привод ГРМ, который обеспечивает открытие и закрытие клапанов, за счет передачи вращения коленвала на распредвал. В качестве привода может использоваться как ремень, так и цепь ГРМ, а также зубчатая передача.

Система питания

В состав данной системы входят такие устройства, как элементы, предназначенные для хранения топлива, воздухоочистительные приборы, узлы, обеспечивающие очистку и подачу топлива, а также приборы для приготовления топливной смеси.

Элементами питания ДВС являются:

  • Топливный бак и топливопровода;
  • Топливный фильтр и насос;
  • Воздушный фильтр;
  • Карбюратор, моновпрыск или инжектор, в зависимости от устройства системы питания.
Интересно! В инжекторных системах питания регулировку работы топливных форсунок осуществляет электронное устройство – блок управления, в конструкцию которого включены различные датчики контроля.

Главными функциями топливной системы являются:

  • Подача топлива из бака;
  • Фильтрация горючего;
  • Образование горючей смеси;
  • Подача смеси в цилиндры.

Отличаются топливные системы в зависимости от типа используемого горючего: в дизельных агрегатах впрыск в камеру происходит под высоким давлением, для чего применяется топливный насос высокого давления.

Система зажигания

Главная функция данной системы является подача искры к свечам зажигания в определенный момент времени. Системы зажигания бывают трех основных типов:

  • Контактная. Создание импульсов происходит в момент разрыва контактов.
  • Бесконтактная. Управляющие импульсы создает транзисторное управляющее устройство.
  • Микропроцессорная система зажигания управляется электронным устройством.

Основными элементами системы являются:

  • Источник питания;
  • Выключатель зажигания;
  • Накопитель;
  • Свечи зажигания;
  • Система распределения;
  • Высоковольтный провод.

Принцип работы данной системы основан на накоплении катушкой зажигания напряжения с низкими характеристиками и его преобразовании в высокое. После накопленная энергия передается к свечам зажигания, а образовываемая в необходимый момент времени искра воспламеняет топливно-воздушную смесь.

Пуск

Основными составными механизмами системы пуска ДВС являются:

  • Стартер;
  • Аккумуляторная батарея;
  • Включатель зажигания.

Данная система обеспечивает удобный, надежный и быстрый пуск двигателя в независимости от условий эксплуатации автомобиля.

Охлаждение

Функционирование систем и механизмов ДВС без организации отвода излишнего тепла не возможно, так как их работа сопряжена с повышенным температурным режимом. Основное назначение системы охлаждения – это уменьшение температуры рабочих элементов мотора.

Интересно! Если авто оборудовано автоматической трансмиссией, то система охлаждения участвует также в организации охлаждения трансмиссионной жидкости.

Существует два основных типа систем охлаждения ДВС:

  • Жидкостная;
  • Воздушная.

Помимо основных функций, система охлаждения отвечает за:

  • Работу системы отопления, вентиляции и кондиционирования;
  • Охлаждение масла в смазывающей системе;
  • Охлаждение газов в системе выхлопа.

Наиболее распространенной является жидкостная система охлаждения, чему способствуют равномерное и эффективное охлаждение узлов и механизмов, а также низкий уровень шумности при работе.

Важными элементами системы охлаждения являются:

  • Жидкостной радиатор;
  • Масляный радиатор;
  • Теплообменник;
  • Вентилятор;
  • Центробежный насос;
  • Расширительный бачок;
  • Термостат.

Важным расходным материалом, благодаря которому обеспечивается охлаждение, является рабочая жидкость – антифриз.

Система смазки

Работа механизмов и узлов ДВС происходит в условиях постоянного трения элементов. Это отрицательно влияет на их состояние, вызывая износ и снижая эксплуатационные характеристики агрегата. Именно для предотвращения таких негативных явлений в конструкцию ДВС включена система смазки. Она является комбинированной, т.е. происходит смешивание моторного масла с топливом.

Основными элементами системы смазки ДВС являются:

  • Масляный фильтр и насос;
  • Поддон;
  • Заборник;
  • Контуры, обеспечивающие подачу масла к элементам.

При помощи масляного насоса происходит подача масла в фильтр, а далее оно распределяется между узлами и каналами смазки. Этот процесс происходит постоянно, а благодаря наличию специальных датчиков контролируется давление в системе.

Тюнинг

Для повышения эксплуатационных характеристик двигателя, его модернизации и увеличения крутящего момента используется такая процедура, как тюнинг. Основными видами тюнинга являются:

  • Расточка цилиндров, которая способствует увеличению камеры сгорания топлива, что несколько увеличивает силовые возможности агрегата.
  • Установка турбины, что обеспечивает увеличение мощности и КПД двигателя;
  • Чип-тюнинг – увеличение эксплуатационных характеристик за счет изменения работы электронной части блока управления.
  • Установка закиси азота, что способствует значительному увеличению мощности мотора.

Как правило, тюнинг проводится только в случае полной исправности узлов и механизмов силового агрегата и должен выполняться квалифицированными мастерами автосервисов.

Для бесперебойной и эффективной работы ДВС следует обращать внимание на любые изменения и своевременно производить диагностику и ремонт оборудования.