Среди общепромышленных, употребляемых для учета продукции и сырья, распространены товарные, автомобильные, вагонные, вагонеточные и др. Технологические служат для взвешивания продукции в ходе производства при технологически непрерывных и периодических процессах. Лабораторные применяют для определения влажности материалов и полуфабрикатов, проведения физикохимического анализа сырья и других целей. Различают технические, образцовые, аналитические и микроаналитнческие .

Можно разделить на ряд типов в зависимости от физических явлений, на которых основан принцип их действия. Наиболее распространены приборы магнитоэлектрической, электромагнитной, электродинамической, ферродинамической и индукционной систем.

Схема прибора магнитоэлектрической системы показана на рис. 1.

Неподвижная часть состоит из магнита 6 и магнитопровода 4 с полюсными наконечниками 11 и 15, между которыми установлен строго центрированный стальной цилиндр 13. В зазоре между цилиндром и полюсными наконечниками, где сосредоточено равномерное радиально направленное , размещается рамка 12 из тонкой изолированной медной проволоки.

Рамка укреплена на двух осях с кернами 10 и 14, упирающихся в подпятники 1 и 8. Противодействующие пружины 9 и 17 служат токоподводами, соединяющими обмотку рамки с электрической схемой и входными зажимами прибора. На оси 4 укреплена стрелка 3 с балансными грузиками 16 и противодействующая пружина 17, соединенная с рычажком корректора 2.

01.04.2019

1.Принцип активной радиолокации.
2.Импульсная РЛС. Принцип работы.
3.Основные временные соотношения работы импульсной РЛС.
4.Виды ориентации РЛС.
5.Формирование развертки на ИКО РЛС.
6.Принцип функционирования индукционного лага.
7.Виды абсолютных лагов. Гидроакустический доплеровский лаг.
8.Регистратор данных рейса. Описание работы.
9.Назначение и принцип работы АИС.
10.Передаваемая и принимаемая информация АИС.
11.Организация радиосвязи в АИС.
12.Состав судовой аппаратуры АИС.
13.Структурная схема судовой АИС.
14.Принцип действия СНС GPS.
15.Сущность дифференциального режима GPS.
16.Источники ошибок в ГНСС.
17.Структурная схема приемника GPS.
18.Понятие об ECDIS.
19.Классификация ЭНК.
20.Назначение и свойства гироскопа.
21.Принцип работы гирокомпаса.
22.Принцип работы магнитного компаса.

Соединение кабелей — технологический процесс получения электрического соединения двух отрезков кабеля с восстановлением в месте соединения всех защитных и изоляционных оболочек кабеля и экранных оплеток.

Перед соединением кабелей измеряют сопротивление изоляции . У неэкранированных кабелей для удобства измерений один вывод мегаомметра поочередно подключают к каждой жиле, а второй — к соединённым между собой остальным жилам. Сопротивление изоляции каждой экранированной жилы измеряют при подключении выводов к жиле и ее экрану. , полученное в результате измерений, должно быть не менее нормированного значения, установленного для данной марки кабеля.

Измерив сопротивление изоляции, переходят к установлению или нумерации жил, или направлений повива, которые указывают стрелками на временно закрепленных бирках (рис. 1).

Закончив подготовительные работы, можно приступать к разделке кабелей. Геометрию разделки соединений концов кабелей видоизменяют в целях обеспечения удобства восстановления изоляции жил и оболочки, а для многожильных кабелей также для получения приемлемых размеров места соединения кабелей.

МЕТОДИЧЕСКОЕ ПОСОБИЕ К ПРАКТИЧЕСКОЙ РАБОТЕ: «ЭКСПЛУАТАЦИЯ СИСТЕМ ОХЛАЖДЕНИЯ СЭУ»

ПО ДИСЦИПЛИНЕ: «ЭКСПЛУАТАЦИЯ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК И БЕЗОПАСНОЕ НЕСЕНИЕ ВАХТЫ В МАШИННОМ ОТДЕЛЕНИИ »

ЭКСПЛУАТАЦИЯ СИСТЕМЫ ОХЛАЖДЕНИЯ

Назначение системы охлаждения:

  • отвод теплоты от ГД;
  • отвод теплоты от вспомогательного оборудования;
  • подвод теплоты к ОУ и другому оборудованию (ГД перед пуском, ВДГ поддержание в "горячем" резерве и т.д.);
  • прием и фильтрация забортной воды;
  • продувание кингстонных ящиков летом от забивания медузами, водорослями, грязью, зимой - ото льда;
  • обеспечение работы ледовых ящиков и др.
Структурно система охлаждения подразделяется на пресной воды и систему охлаждения заборной воды. Системы охлаждения АДГ выполняются автономно.

Рулевое устройство является основным средством управления судном, обеспечивающим его поворотливость и удерживающем его на заданном курсе. Основными его частями являются:

пост управления (штурвал или рулевой электрический манипулятор);

рулевая передача от поста управления к рулевому двигателю;

рулевой двигатель;

рулевой привод от рулевого двигателя к баллеру руля;

руль или поворотная насадка, непосредственно обеспечивающие управляемость судна.

Основной пост управления рулём находится в рулевой рубке у путевого компаса и репитера гирокомпаса. Штурвал или пульт управления рулем монтируют обычно на одной колонке с авторулевым генератором. Рулевой указатель помещается на колонке управления и на левой переборке рубки так, что капитан и вахтенный помощник имели возможность постоянно контролировать положение пера руля.

Штурвал или манипулятор. Штурвал представляет собой колесо с рукоятками, при помощи которых оно вращается на валу, поме­щающемся в специальной штурвальной тумбе.

Поворотом штурвала рулевой приводит в движение всю рулевую систему. Для простоты управления штурвал устроен таким обра­зом, что вращение его вправо соответ­ствует повороту носа корабля вправо и на­оборот.

Электрический рулевой манипулятор пред­ставляет собой рукоятку, установленную на специальной тумбе. Движение рукоятки вправо или влево через электрическую пере­дачу приводит в движение рулевой электродвигатель, с помощью которого руль пово­рачивается в соответствующую сторону. Штурвалы (манипуляторы) устанавливаются в постах управления кораблем (в рулевой поход­ной рубке, в боевых рубках, в центральном посту и в румпельном отделении).

Для обеспечения контроля за положением руля на тумбе штур­вала или манипулятора или рядом с ними устанавливаются руле­вые указатели, показывающие угол отклонения руля.

Рулевая передача. Поворот штурвала приводит в движение рулевую передачу, которая служит для управления рулевым дви­гателем, находящимся обычно в кормовой части корабля. Суще­ствует несколько систем рулевых передач.

Валиковая передача состоит из систем стальных или бронзовых валиков, соединенных друг с другом с помощью кони­ческих шестеренок или шарниров.

Валиковая передача имеет существенные недостатки: шесте­ренки довольню быстро срабатываются, деформация палуб и про­гиб валиков могут вывести из действия все рулевое устройство.

Гидравлическая передача представляет собой систему, состоящую из двух цилиндров, соединенных между собою тонкими медными трубками. Один из цилиндров расположен в нижней части штурвальной тумбы, и поршень его связан со штурвалом. Поршень другого цилиндра, находящийся у рулевой машинки, связан с ее золотником. Вся система заполнена жид­костью (смесью глицерина с водой или минеральным маслом).

Схема валиковой передачи.

1 - штурвал, 2 -конические шестеренки, 3- валики, 4 - рулевой двигатель, 5 - руль.

Схема гидравлической передачи.

1 - штурвал, 2 - манипуляторная часть, 5 - трубопроводы, 4 - поршень исполнительной части.

Штуртросовая передача.

При повороте штурвала поршень цилиндра, находящегося в штурвальной тумбе, давит на жидкость и заставляет ее перели­ваться по трубкам, а так как жид­кость в практических условиях не сжимается, то перемещается пор­шень второго цилиндра.

Гидравлическая передача мало живуча, так как, если трубка будет перебита, передача выходит из строя и для ее восстановления тре­буется много времени.

Электрическая передача в на­стоящее время должна быть призна­на наиболее совершенной системой. Она осуществляется при помощи электрических проводов. Ос­новным элементом этих передач являются контроллеры, располо­женные в штурвальной тумбе и связанные специальным электро­проводом, проложенным в наиболее защищенных частях судна, с электрической рулевой машиной, находящейся в румпельном отделении. Контроллеры поворачиваются штурвалом, ручным качающимся коромыслом или специальными ручками и приводят в движение электрическую рулевую машину

Штуртросовая передача применяется на малых судах. Она состоит из стальных тросов или цепей, связанных с одной стороны со штурвалом, а с другой - непосредственно с рулевым приводом. Главный недостаток штуртросовой пере­дачи - это значительное трение в роликах или шкивах, по кото­рым проходит штуртрос, а также ее быстрое растяжение, приводящее к образованию мертвых ходов.

Аксиометр - прибор для указания положения руля относи­тельно диаметральной плоскости судна. Он установлен на штур­вальной тумбе или рядом с нею. Стрелка показывает, на сколь­ко градусов переложен руль вправо или влево, при этом загорается соответственно зеленая или красная сигнальная лампочка; при прямом положении руля горит белая лампочка.

Рулевой двигатель приводит в движение рулевые приводы. Существует очень много конструк­ций рулевых двигателей, но чаще всегона судах имеются электриче­ские и электрогидравлические машины.

На случай порчи рулевого двига­теля он снабжается удобным сред­ством для выключения его из рулевой системы и перехода к ручному упра­влению.

Рулевые приводы. Для передачи рулю усилий, развиваемых рулевыми двигателями, применяются рулевые приводы. В качестве рулевых двигателей на судах имеются электриче­ские и электрогидравлические машины.

Рулевые приводы обеспечивают передачу усилий рулевого дви­гателя к баллеру.

Секторно-румпельный привод применяется па некото­рых современных судах небольшого тоннажа. В таком приводе румпель жестко скреплен с баллером руля. Сектор, свободно наса­женный на баллер, связан с румпелем при помощи пружинного амортизатора, а с рулевым двигателем - зубчатой передачей. Пе­рекладка руля осуществляется рулевым двигателем через сектор и румпель, а динамические нагрузки от ударов волн гасятся аморти­заторами.

На современных судах рулевые машины совмещаются с руле­выми приводами, что позволяет добиться высокого коэффициента полезного действия всего устройства.

Наибольшее распростране­ние из таких комбинированных устройств получили электрогидрав­лические машины.

В отечественном судостроении применяют плунжерные электро-гидравлические машины. В них давление рабочей жидкости пре­образуется в поступательное движение плунжера, которое затем через механическую передачу преобразуется во вращательное дви­жение румпеля. В качестве рабочей жидкости в таких машинах применяется минеральное масло. Машины выпускаются в двух и четырехцилиндровом исполнении.

В такой машине с баллером руля 1 жестко связан рум­пель 2 и на нем установлен ползун, соединенный с плун­жерами 3 двух цилиндров 4. Цилиндры соединены трубопроводами с насосом 6, приводимым в действие электродвигателем 5. Масло, перекачиваемое посредством насоса из одного цилиндра в дру­гой, вызывает поступательное перемещение поршней, поворачива­ющих баллер через румпель. Амортизатором является перепуск­ной клапан 7, который посредством дополнительного трубопровода соединен с обоими цилиндрами. При ударах воли в перо руля в од­ном из цилиндров создается излишнее давление. Тогда клапан приоткрывается, и масло перемещается из одного цилиндра в другой. На крупнотоннажных теплоходах, обычно устанавливают четырехцилиндровые электрогидравлические машины, создающие большие вращающие моменты.

На баллере 1 жестко насажен румпель 2, который через ползуны 3 соединен с плунжерами 4 гидроцилиндров 5. Электродвигателями 6 приводят­ся в действие радиально-поршневые насосы переменной подачи 7. Рычагом управления 8, приводимым в действие телемоторами 9 с поста управлении через тягу 10 с амортизаторами 11, ведется регулировка работы насосов. При повороте вправо насосы подают рабочую жидкость (масло) в правый носовой, и левый кормовой цилиндры. Давлением масла через плунжеры, ползуны и румпель, вращающий момент, как указано сплошными стрелками, будет пе­редан на баллер, и руль повернется вправо. Штриховые стрелки показывают направление тока масла при повороте руля влево.

Переключением клапанов в клапанной коробке можно вводить в действие четыре или два цилиндра (носовую или кормовую па­ры). Могут быть включены два насоса или один из них. Переклю­чение производится в румпельном отделении. На некоторых судах переключение может производиться с мостика. Как правило, в стес­ненных водах, в узкостях, на подходах к портам включают оба на­соса. В открытом море в действии обычно находится один.

Штурвалом запасного управления перекладка руля осуществляется из румпельного отделения, где установлен репитер гирокомпаса. Такая система име­ет аварийный ручной насос, установленный вне румпельного отде­ления и имеющий отдельный трубопровод, который на рисунке не показан. При работе ручного насоса действует только одна пара цилиндров.



Преимуществами электрогидравлических машин являются: по­лучение больших усилий и крутящих моментов при малых массах и размерах на единицу мощности, плавное бесшумное изменение скорости в широких пределах, высокий коэффициент полезного дей­ствия, надежное смазывание трущихся частей маслом, применяе­мым в качестве рабочей жидкости, возможность надежной зашиты от перегрузок и долговечность при дублировании основных узлов.

При эксплуатации электрогидравлических машин необходимо учитывать, что их работа зависит от качества работы гидронасосов. Все замеченные неполадки в работе таких машин обычно относятся к насосам и элементам системы управления. Так, не отфильтрованное масло в системе, окалина, оставшаяся в трубах, металлическая стружка во внутренних полостях деталей могут служить причиной выхода из строя насосов и системы управления машиной. Сам же плунжерный агрегат надежен и долговечен.

В соответствии с требованиями Регистра РФ рулевое устрой­ство морских судов должно иметь три привода: основной, запасный и аварийный.

Основной привод должен обеспечивать непрерывную перекладку руля с борта на борт при максимальной скорости переднего хода, при этом время перекладки руля с крайнего положения 35° одного борта до 30° другого не должно превышать 28 с.

Запасный рулевой привод должен обеспечивать непрерывную пе­рекладку руля с борта на борт при скорости переднего хода, рав­ной половине максимальной, но не менее 7 уз. Запасный рулевой привод должен действовать независимо от основного, и его необ­ходимо устанавливать на всех судах, кроме судов с основными руч­ными приводами при наличии аварийного румпеля, судов с несколькими раздельно управляемыми рулями и судов с одной электрогидравлической рулевой машиной при наличии двух независимых гид­ронасосов. Переход с основного на запасное рулевое управление должен быть выполнен за время, не превышающее 2 мин.

Аварийный рулевой привод должен обеспечивать перекладку руля с борта на борт при скорости переднего хода не менее 4 уз. Аварийный привод не должен располагаться ниже палубы перебо­рок. Установка его не требуется, если основной и аварийный при­воды расположены в помещении, целиком находящемся выше са­мой высокой грузовой ватерлинии.

Допускается, чтобы основной, запасный и аварийный рулевые приводы или два агрегата основного привода имели некоторые об­щие части, например румпель, сектор, редуктор или цилиндровый блок, но при условии, что конструктивные размеры этих частей бу­дут увеличены в соответствии с требованиями Регистра СССР.

Румпель-тали могут рассматриваться как запасный или аварий­ный рулевой привод только для судов валовой вместимостью до 500 per. т; если они могут присоединиться к электрическому шпи­лю или лебедке, то они будут рассматриваться как запасный при­вод, действующий от источника энергии.

Рулевое устройство должно иметь систему ограничителей пово­рота руля, допускающую его перекладку на угол не более 36,5°. Си­стема управления рулевым приводом должна быть такой, чтобы перекладка руля прекращалась раньше, чем руль дойдет до огра­ничителя, и во всяком случае не позднее момента, соответствую­щего перекладке его на угол 35°.

Около каждого поста управления рулевым приводом должен быть указатель положения пера руля. Такие указатели должны быть и в румпельном отделении. Точность показаний относительно истинного положения пера руля должна быть не менее: Г - при положении руля в диаметральной плоскости; 1,5° - при углах пе­рекладки от 0 до 5°; 2,5° - при углах перекладки от 5 до 35°.

Рули. Рулем называется та часть рулевой системы, которая под действием обтекающей корабль воды заставляет его делать пово­роты.

Рули бывают обыкновенные, балансирные и полубалансирные.

Обыкновенные и полубалансирные рули , состоят из пера 1 , рудерпнеа 4 и баллера 2 . Для облегчения перо выпол­няется в виде листовой рамы, прикрываемой стальными листами.

Рудерпис имеет ряд петель 5 , в которые вставляются штыри 6 . На рудерпосте имеются петли с отверстиями для навешивания руля. Баллер руля проходит через отверстие в корпусе корабля, называемое гельмпортом. Чтобы не допустить воды внутрь корабля, гельмпорт укупоривается сальником 9 . Самая верхняя часть баллера называется головой руля.

Обыкновенный руль.

1 - перо руля, 2 - баллер, 3- голова руля, 4 - рудерпис, 5 - петли, 6-щтыри, 7- пятка, 8 - рудерпост, 9- сальник.

Балансирный руль не имеет рудерписа. Он упирается специаль­ными выступами на петли, помещающиеся внутри корабля.


Действие руля. Когда судно стоит неподвижно, то перекладка руля в ту или другую сторону никакого действия на корабль не окажет. На ходу, если руль стоит прямо, т. е. в средней про­дольной (диаметральной) плоскости, судно будет идти прямо. Происходит это от того, что струя встречной воды равно­мерно с обоих бортов обтекает корпус

Положение руля на переднем ходу. а - вправо, б - влево.

судна и перо руля. Но как только руль будет положен на переднем ходу в сторону, на­пример, вправо, то струи воды, идущие вдоль правого борта, встретят на своем пути перо руля и начнут на него давить. С ле­вого же борта вода никакого препятствия встречать не будет. Под давлением водяных струй справа руль, а вместе с ним и корма начнут подаваться влево, нос пойдет в противоположную сторону, и судно покатится вправо.

При положении руля влево будем наблюдать отклонение кормы вправо, а носа - влево

На заднем ходу произойдет обратное явление: при перекладке руля вправо встречные струи воды будут давить на левую сто­рону пера руля и толкать корму вправо, а нос - влево, при перекладке руля, влево корма пойдет влево, а нос вправо.

Положение руля на заднем ходу. а- вправо, б - влево.

Отсюда следует, что на переднем ходу корабль катится в ту же сторону, в которую положен руль, а на заднем - в сторону, обрат­ную положению руля.

Причины, влияющие на поворотливость. При управлений ко­раблем необходимо считаться с влиянием на поворотливость работы винтов, инерции, крена, ветра, волны.

При разборе влияния на поворотливость корабля работы вин­тов нужно знать наименование шага последних. Винт, вращаю­щийся по часовой стрелке, если смотреть на него, с кормы в нос, называется винтом правого шага (рис. 147); винт, вращающийся против часовой стрелки, - винтом левого шага (рис. 148).

На одновинтовых кораблях ставят винты правого шага, я на двухвинтовых так, чтобы они работали наружу, т, е. справа - винт правого шага, а слева - левого (рис. 149).

Под действием винта правого шага одновинтовой корабль стремится уклониться носом вправо: на переднем ходе немного, а на заднем - сильно. Поэтому при разворачивании в узкости всего лучше делать поворот вправо, если это возможно.

На двух винтовом судне действие винтов взаимно уравновешивается, если они работают с одинаковой силой.

Насадка на винт, установленная вместо руля, зна­чительно улучшает поворотливость судна. Применение ее обеспе­чивает также увеличение скорости хода судна на 4-5% при постоянной мощности главного двигателя. Насадка представляет

собой надетое на винт и укрепленное на баллере кольцо, которое разворачиваться в горизонтальной плоскости. Отбрасываемая гребным винтом струя создает реактивную силу, обеспечиваю поворот судна. В хвостовой части насадки в плоскости оси баллера имеется стабилизатор, усиливающий рулевое действие насадки

Дополнительно к основным средствам управления могут быть установлены также средства активного управления (САУ) , причем некоторые из них нe только улучшают поворотливость, но и обеспечивают перемещение судна лагом.

Средства активизации управ­ления (САУ) нашли широкое при­менение на флоте, так как они, во-первых, обеспечивают маневрирование судна на малых ходах, и, во-вторых, улучшают маневренность судна при швартовке.

К наиболее часто встречающимся САУ на судах относятся: активные рули (АР), подруливающие устройства (ПУ), вспомогательные движительно-рулевые колонки (ВДРК).

Активный руль имеет вспомогательный винт в насадке на задней кромке кормового руля. Электрический двигатель вспомогательного винта заключен в каплевидный кожух, питание к нему подается по пустотелому баллеру, а управление выведено в ходовую рубку. На некоторых судах этот двигатель, смонтированный в торце баллера, находится в румпельном отделении и соединен с винтом с помощью вала, находящегося внутри баллера. При работе вспомогательного винта создается сила упора.

Поворот активного руля на некоторый угол к диамет­ральной плоскости создает момент, разворачивающий корму в сторону, противоположную перекладке руля. При этом намного уменьшается диаметр циркуляции, а поворотливость судна не зависит от скорости хода -
гребной винт от главного двигателя может вообще не вращаться.

При прямом положении руля вспомогательный винт активного руля обеспечивает судну ход до 3 узлов.


Подруливающее устройство (ПУ) представляет собой движитель, заключенный в поперечный туннель ниже ватер­линии и создающий упор в перпендикулярном диаметральной плоскости направлении. Туннель обычно расположен в носовой части судна, но на некоторых судах подруливающее устройство и туннель устроены и в носу, и в корме; в этом случае судно может перемещаться лагом. Рабочим органом ПУ могут быть винты (одиночные и парные), крылатые движители или насосы. Входные отверстия туннеля закрыты жалю­зи, а в туннельной трубе помещены редуктор и два винта, враща­ющиеся в разные стороны. Реверсивный электродвигатель через редуктор передает вращение на гребные валы ПУ.

Выдвижная движительно-рулевая пово­ротная колонка, которую вместе с винтом и на­садкой можно вращать по всему горизонту, что дает возмож­ность создать упор в любом направлении. На ходу судна уст­ройство убирается в специальную шахту в корпусе и не оказывает дополнительного сопротивления движению судна.


Конструкция рулей

Поворот судна выполняется с помощью руля, который установлен в корме судна. При отклонении или, как принято говорить, при перекладке руля на тот или иной борт на руль будет действовать сила давления воды. Эта сила создает вращающий момент, поворачивающий судно в сторону того борта, на который был переложен руль. Чтобы переложить руль, к нему прикладывают некоторый момент, величина которого, а следовательно, и мощность рулевой машины зависят от силы давления воды на руль и отстояния точки приложения равнодействующей сил давления от оси вращения.

В зависимости от расположения оси вращения рули делятся на два типа (рис. 73): небалансирные и балансирные. Ось вращения небалансирного руля проходит по передней кромке пера руля, а балансирного - через перо руля. У балансирного руля точка приложения сил давления находится ближе к оси вращения, поэтому для его перекладки нужна меньшая мощность, что является существенным преимуществом.

Перо руля на судах старой постройки выполняли из толстого стального листа, подкрепленного коваными ребрами. Такие плоские рули при движении судна создавали значительное сопротивление и сейчас применяются редко (на мощных ледоколах) .

Рис. 73. Типы рулей: а - небалансирный; б - балансирный

Современные суда в основном имеют пустотелые (обтекаемые) рули (рис. 74), перо которых состоит из рамы, с двух сторон обшитой лист>-вой сталью. Такая конструкция уменьшает сопротивление воды движению судна. Для еще большего уменьшения сопротивления потоку воды к перу руля на уровне гребного вала добавляется иногда обтекатель в виде грушевидной наделки.

Рама пустотелого руля состоит из горизонтальных ребер и вертикальных диафрагм. Сверху и снизу перо руля закрыто торцовыми листами. Внутреннее пространство для обеспечения водонепроницаемости и защиты от коррозии заполняют смолистым веществом или самовспенивающимся пенополиуретаном.

В верхней части перо руля на фланцах или с помощью конуса соединено с баллером. При фланцевом соединении на нижнем конце баллера и в верхней части пера руля имеются горизонтальные фланцы, скрепленные болтами. Иногда баллер внизу конусный и вставлен в такое же отверстие верхней части пера руля. Так как фланец обычно несколько смещен относительно оси вращения, то образуется плечо, облегчающее поворот руля.

Верхний конец баллера выведен на одну из палуб, на которой расположен рулевой привод. Чтобы вода не проникала в корпус судна через вырез для пропуска баллера, последний помещают в гельмпортовую трубу, соединение которой с наружной обшивкой и настилом палубы водонепроницаемо. В верхней части трубы устанавливают сальник, предотвращающий попадание воды в корпус судна. Выше сальника ставят подшипник, который является верхней опорой баллера руля. В зависимости от способа крепления к корпусу судна рули бывают навесные, подвесные, полуподвесные и со съемным рудерпостом.

Рис. 74. Перо пустотелого руля: 1- баллер; 2- фланеи; 3- торцовый лист; 4-грушевидная наделка-обтекатель; 5- вертикальные диафрагмы; б - горизонтальные ребра; 7-обшивка

Рис. 75. Рули; а-навесной; б - подвесной; в - полуподвесной, г - со съемным рудерпостом; /-гельмпортовая труба; 2- баллер; 3- фланец; 4- рулевая петля, 5- съемный кожух; 6- рудерпост; 7- подпятник; 8- перо руля; 9- гайка; 10- шайба; 11- рулевой штырь; 12- бронзовая облицовка; 13- бакаут; 14- бронзовая втулка; 15- упорный стакан; 16- упорно-опорный подшипник; 17- гельмпортовая труба; 18- упор; 19- подшипник; 20- корпус; 21- сальник; 22- упорно-опорный подшипник; 23- обтекатель; 24- конус баллера; 25- конусное гнездо пера руля; 26- фланец рудерпоста; 27-съемный рудерпост; 28- вертикальная труба

Навесной руль (рис. 75, а) навешивают на рудерпост при помощи рулевых штырей. Нижняя часть штыря имеет цилиндрическую форму, а верхняя - коническую с небольшим уклоном. Часть штыря, расположенная выше конуса, имеет резьбу. Штырь конической частью вводят в отверстие рулевой петли и затягивают гайкой, что обеспечивает его плотную посадку. В петли рудерпоста штыри ставят с небольшим зазором, поэтому они могут свободно вращаться. Для уменьшения трения цилиндрическая часть штыря имеет бронзовую облицовку, а петля рудерпоста - втулку из бакаута или текстолита. В подпятник для уменьшения трения под штырь ставят упорный стакан, который воспринимает вертикальную нагрузку.

Обтекаемый навесной руль обычно навешивают на рудерпост на двух штырях, что дает возможность почти вплотную приблизить перо руля к рудерпосту и уменьшить вихреобразование в зазоре между рудерпостом и рулем. Рудерпост в этом случае имеет обтекаемую форму, что дополнительно уменьшает сопротивление воды. На ледоколах руль навешивают на 3-4 штыря, что повышает надежность крепления.

Перо подвесного руля (рис. 75, б) не имеет опор и поддерживается только баллером, который опирается на опорные и упорные подшипники, установленные внутри корпуса.

Перо полуподвесного руля (рис. 75, в) имеет только один штырь в нижней части пера руля. В верхней части перо руля поддерживается баллером. Вертикальная нагрузка у полуподвесного руля может передаваться как на штырь, так и на баллер. В первом случае штырь в подпятнике Д9лжен опираться на упорный стакан, а во втором баллер снабжают упорным подшипником.

В последнее время все более широкое распространение получают рули со съемным рудерпостом (рис. 75, г). Перо такого руля имеет открытую

Вертикальную трубу, через которую проходит съемный рудерпост. Нижним концом рудерпост закрепляют конусом в подпятнике, а верхним фланцем крепят к ахтерштевню. Так как рудерпост в этом случае является осью, на которой вращается руль, то внутри трубы устанавливают подшипники, а рудерпост в этих местах имеет бронзовую облицовку.

Рулевое устройство (рис. 60), в состав которого входят руль и привод руля, предназначено для управления судном.

Руль (рис. 61) состоит из пера и баллера.

Перо - это плоский или, чаще, двухслойный обтекаемый щит с внутренними подкрепляющими ребрами, площадь которого у морских судов составляет 1/40 - 1/60 площади погруженной части ДП (произведения длины судна на его осадку LT ). Внутреннюю полость пера руля заполняют пористым материалом, предотвращающим попадание воды внутрь. Основу пера руля составляет рудерпис - массивный вертикальный стержень, к которому крепят горизонтальные ребра пера руля. Вместе с рудерписом отливают (или отковывают) петли для навешивания руля на рудерпост (его иногда заменяют жесткой сварной конструкцией).

Баллер - это стержень, при помощи которого поворачивают перо руля. Нижний конец баллера имеет обычно криволинейную форму и заканчивается лапой - фланцем, служащим для соединения баллера с пером руля при помощи болтов. Это разъемное соединение баллера с пером руля необходимо для съема руля при ремонте. Иногда вместо фланцевого применяют замковое или конусное соединение.

Баллер руля входит в кормовой подзор корпуса через гельмпортовую трубу и поддерживается специальным упорным подшипником, расположенным на одной из платформ или палуб.

Верхняя часть баллера проходит через второй подшипник и соединяется с румпелем.

В зависимости от расположения руля относительно оси вращения различают (см. рис. 62): обыкновенные рули, у которых перо полностью расположено в корму от оси вращения; балансир осью вращения на две неравные части: большая - в корму от оси, меньшая - в нос; полубалансирные рули отличаются от балансирных тем, что балансирная часть сделана не по всей высоте руля.

Рис. 60. Рулевое устройство с навесным небалансирным рулем:

1 - перо руля; 2 - нижний опорный подшипник; 3-баллер; 4 - верхний опорный подшипник; 5 - электрогидравлическая рулевая машина; 6 - ограничитель поворота баллера; 7 - гельмпортовая труба; 8 - верхний штырь; 9 - нижний штырь; 10-опорный

ные рули, у которых перо разделено

Балансирные и полубалансирные рули характеризуются коэффициентом

компенсации, т. е. отношением площади балансирной части к полной площади руля (обычно он равен 0,25-0,35). Для их перекладки требуется меньше усилий и, следовательно, менее мощная рулевая машина. Однако крепление таких рулей к корпусу судна сложнее, поэтому на тихоходных судах, на которых требуются небольшие усилия для перекладки руля с борта на борт, применяют обыкновенные рули.


Рис. 61. Основные типы рулей:

а - обыкновенный; б - балансирный; в - балансирный подвесной;

г - полубалансирный одновинтового судна

Разновидностью балансирного руля является широко известный руль типа Симплекс (рис. 7.4) со съемным неподвижным шпинделем, заменяющим

рудерпост, на который навешивают перо руля. Эти рули более надежны, обладают большей жесткостью крепления к корпусу судна и их удобнее демонтировать.

Рис. 62. Балансирный руль типа Симплекс.

1 - перо руля; 2 - лапа баллера;

3 - неподвижный шпиндель

Привод руля состоит из механизмов и устройств, предназначенных для перекладки руля на борт. В их число входят рулевая машина, рулевой привод, т. е. устройство для передачи вращающего момента от рулевой машины к баллеру, и привод управления рулевой машиной (рулевая передача). По Правилам Регистра каждое морское судно должно иметь три привода, действующих независимо друг от друга на руль: основной, запасной и аварийный. Обычно для основного привода применяют рулевые машины, а запасной и аварийный делают ручными, за исключением судов, у которых диаметр головы баллера руля больше 335 мм, а также пассажирских судов с диаметром головы баллера более 230 мм; для них требуется механический запасной привод.

Рулевую машину обычно размещают в специальном румпельном отделении, поблизости от руля, а на малых судах и катерах - в посту управления судном.


Рис. 63. Общий вид и схема действия электрогидравлической рулевой машины.

1 - баллер; 2 - румпель; 3 - цилиндр; 4 - плунжер; 5 - электродвигатель; 6 - масляный насос; 7 - пост управления

В качестве приводов для рулевых машин в настоящее время используют электродвигатели, электрогидравлические, гидравлические и, реже, паровые машины. Наиболее распространены электрогидравлические машины (рис. 63).

Мощность рулевой машины в основном рулевом приводе должна обеспечить на максимальном переднем ходу судна перекладку руля с 35°одного борта до 30° на другой борт не более чем за 28 с. На небольших судах допускается и ручной основной привод в тех случаях, если при выполнении изложенных выше условий усилие на рукоятке штурвала не превысит 160 кН (16 кгс), а число оборотов штурвала будет не более 25 за одну полную перекладку.

Передача на руль усилий, развиваемых в рулевой машине, осуществляется с помощью рулевого привода в виде тросов, цепей или гидравлической системы либо путем жесткой кинематической связи между рулевой машиной и рулем (зубчатые секторы, винты и пр.). Различают румпельный, секторный и винтовой приводы.

Румпельный привод представляет собой одноплечий рычаг - румпель, один конец которого соединен с верхним концом баллера, а другой - с тросом, цепью или гидросистемой, предназначенными для связи с рулевой машиной или постом управления (рис. 64).

Рис. 64. Рулевые приводы:

а - румпельный; б - винтовой.

1 - перо руля; 2 - баллер; 3 - румпель; 4 - штур трос; 5 - зубчатый сектор;

6 - пружинный амортизатор; 7 - винтовой шпиндель; 8 - ползун

Этот привод, называемый иногда продольно-румпельным, применяют на небольших судах, а также спортивных и несамоходных судах внутреннего плавания. В отличие от него поперечно-румпельный привод представляет собой румпель в виде двух-плечего рычага. Он широко распространен на крупных судах, обслуживаемых четырехплунжерными гидравлическими рулевыми машинами.

Секторный привод широко применяют при передаче усилий на руль от электрических рулевых машин. В этом случае находящаяся в зацеплении с сектором шестерня вращается от электродвигателя. Для компенсации ударных нагрузок на руль в секторе устанавливают пружинные компенсаторы.

Винтовой привод обычно бывает запасным, его ставят непосредственно у руля в румпельном отделении. Вращение от штурвала передается винтовому шпинделю, имеющему по концам резьбу противоположных направлений. Перемещающиеся при вращении шпинделя ползуны с правой и левой резьбой через систему тяг воздействуют на плечи поперечного румпеля, насаженного на баллер руля. Винтовой привод компактен и позволяет снизить до необходимого предела усилия на штурвал благодаря возможному большому передаточному числу. Недостатком его является более низкий КПД из-за потерь при трении винтовой пары.

Привод управления рулевой машиной (рулевая передача) служит для передачи команд из рулевой рубки на рулевую машину, находящуюся обычно на большом расстоянии от мостика. На современных крупных судах наиболее распространены электрический и гидравлический приводы. Реже применяют тросовый или валиковый приводы.

Положение пера руля контролируется специальными указателями. Для обеспечения бесперебойной работы рулевого устройства пост управления машиной дублируют, располагая запасный пост в румпельном отделении или рядом с ним.

На малых судах, не имеющих рулевых машин, перекладка руля вручную

при вращении штурвала выполняется с помощью штуртросовой проводки, состоящей из троса, прикрепленного с двух сторон к румпелю и проведенного

через направляющие ролики от румпеля к штурвалу. Закрепленные на барабане

штурвала штуртросы при вращении штурвала навиваются на барабан или сматываются с него, усилие передается на румпель, а затем на руль. Для устранения возникающей при повороте румпеля слабины штуртроса в схему вводят пружинные компенсаторы или ползуны, перемещающиеся вдоль румпеля.

Разновидностью ручного привода с секторной передачей усилия на баллер руля является валиковая передача. Она состоит из нескольких валиков,

соединенных при помощи муфт и карданных шарниров, а в местах крутых изломов - коническими передачами. Вращение от штурвала через валиковую передачу сообщается шестерне, сцепленной с сектором руля. Валиковая передача обладает большим КПД, чем штуртросовая.



Рис. 65. Активный руль (а) и поворотная насадка (в).

1 - перо руля; 2- винт подруливающего устройства; 3- гидравлический двигатель; 4- баллер; 5 – трубопровод; 6- гребной винт; 7- поворотная насадка

Дополнительные средства управления. Для улучшения маневренности судна на малых ходах, когда обычное рулевое устройство недостаточно эффективно, особенно при швартовке судна у пирса и движении в узких местах (каналы, шхеры, ограниченный фарватер), устанавливают дополнительные средства управления: носовые рули, а также средства активного управления (САУ) - направляющие насадки, активные рули, подруливающие устройства и вспомогательные движительно- рулевые колонки (ВДРК).

Носовой руль размещают в нижней части носовой оконечности. Его применяют на паромах так называемого челночного типа, т. е. плавающих попеременно носом и кормой. Широкого распространения не получил.

Активный руль (рис. 65) - это небольшой гребной винт, установленный в пере обычного руля и приводимый в действие от электродвигателя, расположенного либо непосредственно вместе с ним в пере руля, либо в баллере. При перекладке руля с работающим в нем гребным винтом последний создает упор, поворачивающий кормовую оконечность судна, даже если оно не имеет хода.

Работающий гребной винт активного руля может также сообщать судну малый ход вперед. Активные рули применяют на траулерах, паромах, исследовательских и других судах. Недостатком их является вызываемое дополнительное сопротивление движению судна на полном ходу и в связи с этим некоторое снижение скорости.

Поворотная насадка (рис. 65, б) представляет собой кольцеобразное тело, укрепляемое на баллере, ось которого расположена в плоскости диска гребного винта. При повороте насадки (устанавливаемой вместо руля) отбрасываемая гребным винтом струя воды отклоняется, что и вызывает поворот судна.

Поворотная насадка не только значительно улучшает поворотливость судна на малых ходах (особенно на заднем), но и позволяет при постоянной мощности увеличить скорость на 4-5 %. Поворотные насадки широко применяют на речных судах, толкачах-буксирах и некоторых рыбопромысловых судах.

Подруливающее устройство (рис. 66, а) - это расположенная в носовой

(реже, в кормовой) оконечности труба, перпендикулярная к ДП, со сквозными выходами на оба борта, закрываемыми обычно жалюзи. В этой трубе размещают гребной винт или крыльчатый движитель, образующий направленную перпендикулярно к ДП судна струю воды, создающую упор, под действием которого и поворачивается нос (или корма) судна. При установке двух подруливающих устройств (в носу и корме) эффективность их действия возрастает благодаря возможности одновременной работы в разные стороны. При работе обоих устройств в одном направлении судно может перемещаться лагом, что очень удобно при швартовке у пирса. Подруливающие устройства обеспечивают высокую маневренность в дрейфе и на малых ходах (при скорости не более 2-6 уз), поэтому их обычно ставят на судах, имеющих частые швартовки (например, на пассажирских судах, паромах, спасателях и др.). Подруливающее устройство на океанских пассажирских лайнерах и крупнотоннажных судах позволяет им входить в порты, подходить к причалу и отходить от него без помощи буксиров.

Рис. 66. Подруливающее устройство и вспомогательная движительно-рулевая колонка

В последнее время на некоторых танкерах встречается подруливающее устройство в виде водометного движителя, использующего энергию балластного, или грузового насоса. Интересны также применяемые на некоторых паромах, промысловых и исследовательских судах и на судах технического флота ВДРК - выдвигаемые под днищем поворотные колонки с гребным винтом, создающим упор в нужном направлении (рис. 66, б).

Как показывают расчеты, для удовлетворительной управляемости на малых ходах подруливающее устройство должно создавать упор, равный 40-60 кН (4-6 кгс) на каждый квадратный метр площади подводной части ДП судна.

Рулевое устройство служит для изменения направления движения судна, обеспечивая перекладку пера руля на некоторый угол в заданный промежуток времени. Основными его частями являются:

· Пост управления;

· Рулевая передача от поста управления к рулевому двигателю:

· Рулевой двигатель;

· Рулевой привод от рулевого двигателя к баллеру руля;

· Руль или поворотная насадка, непосредственно обеспечивающие управляемость судна.

Основные элементы рулевого устройства показаны на рис. 3.10.

Руль - основной орган, обеспечивающий работу устройства. Он действует только на ходу судна и в большинстве случаев располагается в кормовой части. Обычно на судне один руль. Но иногда для упрощения конструкции руля (но не рулевого устройства, которое при этом усложняется) ставят несколько рулей, сумма площадей которых должна быть равной расчетной площади пера руля.

Основной элемент руля - перо. По форме поперечного сечения перо руля может быть: а) пластинчатым или плоским, б) обтекаемым или профилированным.

Рис.3.10 Рулевое устройство

1 – перо руля; 2 – баллер; - 3 – румпель; 4 – рулевая машина с рулевым приводом; 5 – гельмпортовая труба; 6 – фланцевое соединение; 7 – ручной привод.

Преимущество профилированного пера руля в том, что сила давления на него превосходит (на 30% и более) давление на пластинчатый руль, что улучшает поворотливость судна. Отстояние центра давления такого руля от входящей (передней) кромки руля меньше, и момент, необходимый для поворота профилированного руля, также меньше, чем у пластинчатого руля. Следовательно, потребуется и менее мощная рулевая машина. Кроме того, профилированный (обтекаемый) руль улучшает работу винта и создает меньшее сопротивление движению судна.

Форма проекции пера руля на ДП зависит от формы кормового образования корпуса, а площадь - от длины и осадки судна (L и d), У морских судов площадь пера руля выбирается в пределах 1,7-2,5% от погруженной части площади диаметральной плоскости судна. Ось баллера является осью вращения пера руля. Баллер руля в кормовой подзор корпуса входит через гельмпортовую трубу. На верхней части баллера (голове) крепится на шпонке рычаг, называемый румпелем, служащий для передачи вращательного момента от привода через баллер на перо руля.

Судовые рули принято классифицировать по следующим признакам:

По способу крепления пера руля с корпусом судна различают рули:

а) простые - с опорой на нижнем торце руля или со многими опорами на рудерпосте;

б) полуподвесные – с опорой на специальном кронштейне в одной промежуточной точке по высоте руля;

в) подвесные – висящие на баллере.

По положению оси вращения относительно пера руля различают рули:

а) небалансирные – с осью, размещенной у передней (входящей) кромке пера;

б) балансирные – с осью, расположенной на некотором расстоянии от передней кромки руля.

Рис.3.11 Простой небалансирный руль.

Рис.3.12 Полуподвесной небалансирный руль.

Рис.3.13 Подвесной небалансирный руль.

Рис.3.14 Простой балансирный руль.

Рис.3.15 Полуподвесной балансирный руль (полуподвесной)

Рис.3.16 Подвесной балансирный руль.

Рулевой привод предназначается для передачи команд от штурмана из рулевой рубки к рулевой машине в румпельном отделение. Наибольшее применение находят электрическая или гидравлическая передачи. На малых судах применяются валиковые или тросовые приводы, в последнем случае этот привод называют - штуртросовым.

Контрольные приборы следят за положением рулей и -исправным действием всего устройства.

Приборы управления передают приказания рулевому при управлении рулем вручную.

Рулевое устройство - одно из самых важных устройств, обеспечивающих живучесть судна. На случай аварии рулевое устройство имеет дублирующий пост управления рулем, состоящий из штурвала и ручного при­вода, расположенных в румпельном отделении или вблизи от него.

При малых скоростях судна рулевые устройства становятся недостаточно эффективными и порой делают судно совершенно неуправляемым. Для повышения маневренности на современных судах некоторых типов (промысловых, буксирах, пассажирских и специальных судах) устанавливают активные рули, поворотные насадки, подруливающие устройства или крыльчатые движители. Эти устройства позволяют судам самостоятельно выполнять сложные маневры в открытом море, а также проходить без вспомогательных буксиров узкости, входить на акваторию рейда и гавани и подходить к причалам, разворачиваться и отходить от них, экономя на этом время и средства.

Активный руль (рис.3.17) представляет собой перо обтекаемого руля, на задней кромке которого установлена насадка с гребным винтом, приводящимся в движение от валиковой конической передачи, проходящей через пустотелый баллер и вращающийся от электродвигателя, установленного на голове баллера. Существует тип активного руля с вращением винта от электродвигателя водяного исполнения (работающего в воде) вмонтированного в перо руля. При перекладке активного руля на борт, работающий в нем винт создает упор, разворачивающий корму относительно оси поворота судна. При работе гребного винта активного руля на ходу судна скорость судна увеличивается на 2-3 узла. При остановленных главных двигателях от работы гребного винта активного руля судну сообщается малый ход до 5 узл.

Рис.3.17 Активный руль с конической передачей на винт .

Поворотная насадка , установленная вместо руля, при перекладке на борт отклоняет отбрасываемую гребным винтом струю воды, реакция которой вызывает разворот кормовой оконечности судна. Поворотные насадки представляют собой направляющую насадку гребного винта, укрепленную на вертикальном баллере, ось которого пересекается с осью гребного винта в плоскости диска винта (рис.29). Поворотная направляющая насадка является частью движительного комплекса и одновременно служит органом управления, заменяя руль. Выведенная из ДП насадка работает как кольцевое крыло, на котором возникает боковая подъемная сила, вызывающая поворот судна. Возникающий на баллере насадки гидродинамический момент (как на переднем, так и нa заднем ходу) стремится увеличить угол ее перекладки. Чтобы снизить влияние этого отрицательного момента, в хвостовой части насадки устанавливается стабилизатор с симметричным профилем. Угол поворота насадки относительно ДП корабля составляет, как правило, 30-35°.

Рис.3.18. Поворотная насадка.

Подруливающие устройства выполняются обычно ввиде туннелей, проходящих через корпус, в плоскости шпангоута в кормовой и

Рис.3.19 Принципиальная схема подруливающего устройства