При разработке графика движения поездов исходят из определенных значений их веса и длины. Вес поезда определяет скорость его движения на одном и том же участке и при одной и той же мощности локомотива: чем больше вес, тем ниже скорость. Поэтому определение наиболее рациональных (оптимальных) норм веса и скорости представляет сложную эксплуатационную задачу, при решении которой учитывается большое число факторов – мощность локомотива, длина приемо-отправочных путей, характер вагонопотоков, продольный профиль пути, погонная нагрузка вагонов и др.

Максимальное число вагонов, которое может быть включено в состав поезда, зависит в основном от установленных норм веса поезда и длины состава, а также погонной нагрузки вагонов.

Максимальный вес поезда определяется силой тяги локомотива, расчетным подъемом и удельным сопротивлением локомотива и вагонов при движении на расчетном подъеме. Современные локомотивы при электрической и тепловозной тяге на основных железнодорожных линиях, имеющих расчетный подъем 6–9 о / оо, (тысячных) позволяют установить значительные нормы веса. А если учесть возможность работы локомотивов по системе многих единиц, то можно считать, что сила их тяги практически не ограничивает веса поезда.

Величину составов поездов ограничивает в основном недостаточная длина приемо-отправочных путей на станциях – 850 м. На основных наиболее грузонапряженных направлениях они удлинены до 1050 м. В отдельных случаях пути удлиняются до 1250 м. Однако на некоторых имеющих важное значение линиях еще сохранились раздельные пункты с полезной длиной приемо-отправочных путей 720 м. Это объясняется тем, что все резервы для удлинения здесь исчерпаны (профиль и длина станционных площадок) и дальнейшее увеличение протяженности путей требует крупной реконструкции. Учитывая, что длина условного вагона равна 14 м и на установку локомотива требуется 50 м, протяженность путей длиной 1050 м позволяет устанавливать 71 условный вагон; 850 м – 57; 720 м – 48 условных вагонов.

Вес поезда зависит не только от числа вагонов в составе, но и от их грузоподъемности и от того, как грузоподъемность фактически используется. При одном и том же числе вагонов, ограниченном длиной пути, вес поезда определяется нагрузкой на 1 м пути (так называемой погонной нагрузкой поезда). Это число тонн брутто, которое приходится на 1 м длины пути, занимаемой вагоном. Например, нагрузка крытого порожнего вагона 15 т/м, груженого, когда грузоподъемность использована на 80%, 49 т/м, полностью загруженного 4-осного полувагона 61 т/м. Если полезная длина пути 850 м, нагрузка на 1 м пути 15 т/м, то вес поезда 1200 т; при нагрузке 49 т/м масса поезда 4000 т. Удлинение пути до 1050 м при нагрузке 82 т/м позволит увеличить вес поезда до 8200 т.

Важнейшими характеристиками локомотивов являются: осевая формула, осевая нагрузка, служебный вес, сцепной вес, габарит и коэффициент полезного действия.
Осевая формула характеризует число, расположение и назначение движущих колесных пар. Для локомотивов тележечного типа осевая формула представляет собой сочетание цифр, число цифр соответствует числу тележек, каждая цифра показывает число осей в тележке. Далее ставится знак «+», если тяговое усилие передается через сочленение тележек, или знак «-», если тележки не соединены между собой (не сочленены) и тяговое усилие передается через раму кузова. Нижний индекс «0» у цифр показывает, что каждая ось имеет индивидуальный (отдельный) привод. Например, тележечный электровоз ВЛ60 имеет осевую формулу 3 0 - 3 0 , которая показывает, что у электровоза две трехосные тележки, тележки не соединены между собой и каждая ось имеет отдельный (индивидуальный) привод (тяговый электродвигатель). Такую же осевую формулу имеет и тепловоз ТЭП-70: 3 0 - 3 0 .
У восьмиосного двухсекционного электровоза с несочлененными тележками, у которого каждая секция самостоятельно работать не может (электровозы ВЛ10, ВЛ10 У, ВЛ80 Т, ВЛ80 Р) осевая формула 2 0 -2 0 - 2 0 -2 0 , а у локомотива с сочлененными тележками - 2 0 +2 0 + 2 0 +2 0 (электровоз ВЛ8).
Осевые характеристики электровозов, у которых каждая секция работает самостоятельно, будет 2(2 0 -2 0) - электровозы ВЛ11 и ВЛ80с, 2(3 0 -3 0) -тепловоз 2ТЭ116. Цифры 2 или 3 перед скобкой означают число секций локомотива.
У локомотивов нетележечного типа в осевой формуле последовательно перечислено число осей бегунковых, ведущих (сцепных) и поддерживающих. Например, у тепловоза ТГМ1 осевая формула -0-3-0, что означает: бегунковых осей нет, ведущих осей - три с групповым приводом, поддерживающих нет. Тепловоз Э ЭЛ имеет осевую формулу 2-5 0 -1, т.е. две бегунковых оси, пять ведущих с индивидуальным приводом, одна поддерживающая.
За рубежом в осевых формулах локомотивов число движущих колесных пар показывают не цифрами, а буквами латинского алфавита. Буква А - одна ось, В - две, С - три и т.д. Например, осевая характеристика тепловоза ТЭП-70 для российских железных дорог: 3 0 -3 0 , а для зарубежных дорог записывается как С 0 -С 0 . (нагрузка от осей на рельсы) характеризует статическое воздействие локомотива на железнодорожный путь. Для магистральных локомотивов эксплуатирующихся на железных дорогах нашей страны, наибольшая допустимая нагрузка на рельсы составляет 225кН. У локомотивов ВЛ15, ВЛ85, 2ТЭ121 - 245кН.
Служебным весом локомотива называется его полный вес - с локомотивной бригадой и экипировочными материалами, (для тепловоза с полным запасом воды и масла и двумя третями запасов топлива и песка).
Сцепной вес - вес, передающийся на движущие колесные пары. Так как почти у всех локомотивов все оси являются движущими, то для них сцепной вес равен служебному.
Габаритом называется предельное поперечное очертание (перпендикулярно оси пути), за пределы которого не должна выступать ни одна часть локомотива. Для локомотивов стандартом установлены габариты Т и 1-Т. Габарит1-Т имеет предельно наибольшую ширину 3400мм и высоту 5300 мм.
Коэффициент полезного действия , хоть и является основным параметром локомотива, представляет собой расчетную величину эффективности определенного типа локомотивов: паровозов, электровозов, тепловозов и т.д.
Тепловозы имеют высокое значение коэффициента полезного действия 26-30%. Пробеги тепловозов без пополнения запасов воды и топлива составляют 800-1000 км. Тепловозы автономны, т.е. не зависят от контактной сети, как электровозы, и поэтому эксплуатация тепловозов не требует устройств электроснабжения, и железные дороги с тепловозной тягой обходятся дешевле электрифицированных железных дорог. Тепловозы выгодно эксплуатировать на маневровой и вывозной работе. Средний эксплуатационный к.п.д. тепловоза повышается с использованием его мощности на 80-100%, а при использовании мощности на 30% к.п.д. снижается до 20%.
Электрическая тяга имеет ряд преимуществ перед тепловозной. Современные тепловые электростанции с мощными и экономичными агрегатами работают с к.п.д. до 40% и к.п.д. электрической тяги при получении энергии от таких электростанций составляет 25-30%. Кроме того, тепловозы работают на дорогом высококалорийном топливе. Тепловые электрические станции могут работать на более низких сортах топлива. При питании линии от гидроэлектростанций к.п.д. электровозов и электропоездов составляет 60-62%. Эффективность электрической тяги возрастает также при питании участков от атомных электростанций. Средневзвешенный эксплуатационный коэффициент полезного действия электротяги при питании от электростанций всех типов, с учетом потерь топлива при его добыче, транспортировке и хранении:
к.п.д. электрических станций;
к.п.д. линий электропередачи с учетом к.п.д. транспортных подстанций (0,95-0,96);
к.п.д. тяговой подстанции (0,94-0,97);
к.п.д. контактной сети (=0,94-0,96);
к.п.д. электрического локомотива (0,85-0,88);
коэффициент, учитывающий потери топлива (=0,94-0,96).
Электровозы более надежны в эксплуатации, требуют меньших затрат на осмотры и ремонты. Электрическая тяга может перерабатывать запасенную механическую энергию в электрическую и отдавать ее при рекуперативном торможении в контактную сеть для использования ее другими электровозами или моторными вагонами, работающими в это время в тяговом режиме.

Маневровый тепловоз ТЭМ33

(ЗАО «Трансмашхолдинг»)

Маневровый тепловоз ТЭМ33 с двухдизельной силовой установкой с электрической передачей переменно-переменного тока, предназначен для выполнения маневровой, маневрово-вывозной и хозяйственной работ в депо, на станциях ОАО «Российские железные дороги» и промышленных предприятиях. Применение двухдизельной силовой установки обеспечивает:

Экономию горюче-смазочных материалов;

Улучшение экологический характеристик.

Номинальная мощность дизеля, кВт (л.с.)

Служебная масса тепловоза (с запасом топлива и песка 2/3 от полной загрузки), т

Осевая формула

Сила тяги расчетного режима на ободе ходовых колес (при новых бандажах) от дизель-генератора кН (тс)

Скорость конструкционная, м/с (км/ч)

Экипировочные запасы топлива, кг, не менее:

Срок службы тепловоза, не менее, лет

Габарит по ГОСТ 9328

Габаритные размеры тепловоза:

по осям автосцепок, мм

ширина (по поручням)

высота от уровня головок рельсов

Выброс вредных веществ с отработавшими газами и дымность тепловоза

согласно ГОСТ Р 50953

Передача

индивидуальная на каждую ось

Тип кузова

капотный с несущей рамой, с одной кабиной управления

Маневровый тепловоз ТЭМ18ДМ

Тепловоз ТЭМ18ДМ предназначен для выполнения маневровой работы на станциях и легкой вывозной работы между станциями.
Основными отличиями тепловоза ТЭМ18ДМ от тепловоза ТЭМ18Д является применение возбудителя генератора, взамен двухмашинного агрегата; кроме этого применено кондиционирование кабины машиниста, что позволило улучшить условия работы локомотивных бригад; установлена система УСТА.
По сравнению с тепловозами серии ТЭМ2 применены дизель с уменьшенным на 7-10% расходом топлива; унифицированная кабина машиниста, обеспечивающая комфортные условия работы машиниста, с установкой унифицированного пульта управления; микропроцессорная система управления тягового генератора.
Выпускается ЗАО «УК «БМЗ» с 2004 г.

Наименование

Показатель

Мощность по дизелю, кВт (л.с.)

Служебная масса, т

Сила тяги длительного режима, кН (тс)

Сила тяги при трогании с места, кН (тс)

Скорость конструкционная, км / ч

Запасы топлива, кг

Гибридный маневровый тепловоз ТЭМ35

Маневровый 6-осный тепловоз ТЭМ35 имеет комбинированную (гибридную) силовую установку, электрическую передачу переменно-переменного тока, асинхронный тяговый привод. Локомотив предназначен для выполнения маневровой, маневрово-вывозной, горочной и хозяйственной работ, перемещения грузов по путям станций и предприятий промышленности, где ширина колеи составляет 1520 мм.
На тепловозе в качестве накопителей энергии используются электрохимические конденсаторы. Применен принцип векторной системы управления, что обеспечивает передачу энергии дизель-генератора в накопитель и к двигателям, а также возврат в накопитель энергии рекуперации. Преимуществами такой системы являются увеличение ресурса работы экипажной части не менее чем в полтора раза, уменьшение удельных затрат на тягу на 20-30%
(Брянский машиностроительный завод)

Осевая формула

Масса локомотива, т

Мощность, кВт

Сила тяги при трогании с места, кН

Удельный расход топлива, г/кВт·ч

Расход масла на угар, г/кВт·ч

Тепловоз ТЭМ-ТМХ

Маневровый тепловоз ТЭМ-ТМХ предназначен для тяжелой вывозной, маневровой и легкой магистральной работы работ на путях с шириной колеи 1520 мм и со скоростью до 100 км/ч.
Тепловоз ТЭМ ТМХ сконструирован на базе тепловоза ТЭМ18 с использованием его главной рамы и бесчелюстных тележек.
На тепловозе ТЭМ-ТМХ применена модульная конструкция, что позволило установить башенную кабину машиниста и низкий капот. Тепловоз ТЭМ-ТМХ оснащен двигателем внутреннего сгорания Caterpillar 3512B DITA (или 3508 B DITA) мощностью 1455 кВт или 970 кВт, электродинамическим тормозом, автономным подогревателем кабины машиниста и кондиционером.

Мощность по дизелю, кВт (л.с.)

1455 (1951)

Осевая характеристика

3 0 -3 0

Служебная масса, т

Род передачи

электрическая

Мощность электродинамического тормоза, кВт

1020

Скорость при продолжительном режиме, км/ч

13,5

Сила тяги при продолжительном режиме, кН

Сила тяги при трогании, кН

Минимальный радиус проходимых кривых, м

Запасы, кг:

топлива

Песка

5400

2000

Маневровый тепловоз ТЭМ31

Маневровый тепловоз ТЭМ31 построен на ОАО «Ярославский электровозоремонтный завод» по проекту ОАО «ВНИКТИ» и предназначен для маневровой и выездной работы на железных дорогах с шириной колеи 1520 мм и служит для замены устаревшего парка маневровых тепловозов типа ТГМ, ЧМЭ3, ТЭМ2.
На тепловозе ТЭМ31 используются следующие инновационные решения:
- модульная дизель-генераторная установка мощностью 600 л.с.;
- микропроцессорная система управления и диагностики;
- управление тяговыми двигателями постоянного тока с помощью регуляторов, выполненных на IGBT-транзисторах;
- автоматическая универсальная система измерения уровня топлива в баке;
- модульный винтовой компрессор с системой плавного пуска;
- вентилятор охлаждения тяговых двигателей с возможностью линейного регулирования расхода охлаждающего воздуха;
- новая кабина управления кругового обзора;
- интеллектуальные пульты управления (основной и дополнительный) собственными микропроцессорными устройствами.


Назначение тепловоза

маневровый

Тип дизеля (число цилиндров)

ЯМЗ-850 (12)

Колея, мм

1520

Осевая формула

0-2 0 -0

Служебная масса, т

Нагрузка от колесной пары на рельсы, кН

225,4

Длина, мм

11000

Конструкционная скорость, км/ч

Мощность по дизелю, кВт

Сила тяги (при трогании с места/

продолжительная), кН

102,9/93,1

Тип передачи

электрическая переменно-

постоянного тока

Двухдизельный маневровый тепловоз на базе ЧМЭ3

Предназначен для маневровых, вывозных и хозяйственных работ.

Двухдизельная силовая установка на базе двух модульных дизель-генераторов состоит из дизеля ЯМЗ-Э8502.10-08 и тягового генератора ГС530АМУ2 мощностью по 478 кВт каждый.

По сравнению с серийным тепловозом ЧМЭ3 обеспечивает в зависимости от условий эксплуатации:

Экономию топлива от 4 до 15%;

Снижение затрат жизненного цикла от 3,9 до 16,2 млн. руб.

Срок окупаемости инвестиционных затрат - не более 7,1 года.


Тип передачи

электрическая, переменно- постоянного тока

Осевая формула

3 0 -3 0

Ширина колеи, мм

Не более

Конструкционная скорость, км/ч

Сила тяги при трогании с места при коэффициенте сцепления 0,25, кН (тс), не менее

Скорость длительного режима, км/ч

Скорость, допускаемая в течение 30 минут, км/ч

Сила тяги длительного режима, кН (тс), не менее

Сила тяги при скорости 9,3 км/ч, кН (кгс)

Минимальный радиус проходимой кривой, м

Топлива, л

Песка, кг

Трехдизельный тепловоз ЧМЭ3

Трехдизельный тепловоз изготовлен на базе экипажной части и кузова тепловоза ЧМЭ3 при капитальном ремонте и предназначен для маневровой и маневрово-вывозной работы на железнодорожных путях с шириной колеи 1520 мм. Тепловоз оборудован двумя блочными силовыми установками с двигателем ЯМЗ-8502.10-08 и тяговыми генераторами ГС530 АМУ2. Вспомогательная дизель-генераторная установка Cummins c33D5 мощностью 24 кВт.

Кроме того, на тепловоз установлены:

Аппаратура тяговой электропередачи переменно-постоянного тока;

Микропроцессорная система управления и диагностики;

Модульный компрессорный агрегат на базе винтового компрессора;

Система измерения и контроля уровня топлива в баке;

Электроприводы вентиляторов охлаждения тягового оборудования;

Кабина управления модернизирована в соответствии с действующими Санитарными правилами с установкой эргономичных рабочих мест машиниста (пультов управления и кресел), электрообогреваемых лобовых и боковых стекол, новой обшивы и теплозвукоизоляции из современных материалов.

Экономия топлива обеспечивается за счет того, что в режиме ожидания работы на тепловозе работает дизель-генератор малой мощности, который обеспечивает предпусковой прогрев основных дизелей, заряд аккумуляторной батареи, работу компрессорной установки, обогрев кабины управления и работу микропроцессорной системы управления. При малых нагрузках на тягу работает один из дизелей мощностью 478 кВт и только при повышении нагрузки (с 4 позиции контроллера) подключается третий.


Род службы

маневровый

Полная мощность тепловоза, кВт (л.с.)

Тип тяговой электропередачи

переменно-постоянного

Нагрузка от колесной пары на рельсы, кН (тс)

201,1 (20,5)±3%

Масса тепловоза, т

Скорость:

Сила тяги:

Коэффициент полезного использования мощности дизелей на тягу при реализации полной мощности

Величина экипировочных запасов:

Топлива, л

Песка, кг

Снижение расхода топлива в эксплуатации по сравнению со штатным тепловозом ЧМЭ3, %

Тепловоз ТЭМ9Н

Тепловоз ТЭМ9Н с интеллектуальным гибридным асинхронным приводом предназначен для маневровой и маневрово-вывозной работы
Локомотив имеет ряд инновационных решений:
- интеллектуальную микропроцессорную систему и программный продукт для управления гибридным асинхронным приводом;
- Li-Io аккумуляторы и конденсаторы сверхвысокой энергоемкости;
- системой ГЛОНАСС, системами видеонаблюдения, системой контроля стыковки (аналог системы Parktronic), системой предпускового подогрева дизельного двигателя, пуск двигателя с использованием энергии суперконденсаторов
Использование интеллектуальной микропроцессорной системы управления гибридным асинхронным приводом обеспечит:

Тепловоз ТЭМ18В с дизелем W6L20L фирмы «Вяртсиля»

Маневровый тепловоз ТЭМ18В с дизелем W6L20LА корпорации «Вяртсиля» с электрической передачей постоянного тока предназначен для маневровой, вывозной, горочной работы на ж.д. станциях и легкой магистральной работы на железных дорогах колеи 1520. Изготовлен на базе серийного маневрового тепловоза ТЭМ18ДМ и имеет следующие конструктивные отличия тепловоза от последнего:
- дизель-генератор с дизелем W6L20LА компании «Вяртсиля» с номинальной частотой вращения коленвала дизеля 1000 об/мин;
- главная рама тепловоза ТЭМ18ДМ с доработкой под установку дизеля W6L20LА и новой установкой балласта;
- охлаждающее устройство дизеля с установкой 24 охлаждающих секций;
- редуктор привода вентилятора охлаждающего устройства с гидромуфтой переменного наполнения;
- тормозной компрессор КТ-6 с номинальной частотой вращения 1000 об/мин. производительностью 6 м куб. /мин;
- унифицированный комплекс тормозного оборудования локомотива УКТОЛ;
- трубопровод тормозной системы из нержавеющей стали;
- автономная система подогрева теплоносителей дизеля «Гольфстрим»;
- автономный отопитель кабины управления «Webasto».

Род службы

маневровый

Полная мощность тепловоза, кВт (л.с.)

Тип тяговой электропередачи

постоянного

Нагрузка от колесной пары на рельсы, кН (тс)

Масса тепловоза, т

Скорость:

Конструкционная скорость, м/с (км/ч)

Длительного режима, м/с (км/ч)

Сила тяги:

При трогании с места при коэффициенте сцепления 0,25, кН (тс), не менее

Длительного режима, кН (тс), не менее

Габарит по ГОСТ 9238-83

Величина экипировочных запасов:

Топлива, л

Песка, кг

Минимальный радиус проходимых кривых, м

Номинальное напряжение цепей управления, В


Расчетную касательную мощность (в кВт) локомотива, реализуемую на ободе его колес при условии установившегося движения, находят из выражения

где - касательная сила тяги на расчетном режиме, равная сопротивлению движения поезда заданной массы, кН;

Расчетная скорость движения, км/ч.

Исследования по установлению масс грузовых и пассажирских поездов показывают, что экономически целесообразная масса поезда соответствует полному использованию длины станционных путей и их несущей способности. При современных нормах на эти показатели пути и с учетом технической оснащенности и провозной способности железных дорог наибольшая масса пассажирского поезда составляет не более 1200 т, грузового 6000 т (таблица 4.1). При массе поезда = 8000 т наивыгоднейшая расчетная скорость для тепловозов равна 27 км/ч, газотурбовозов 30-40 и электровозов 40-60 км/ч.

Наибольшую касательную мощность маневрового тепловоза, реализуемую при разгоне грузового поезда массой до скорости , находят из уравнения

(2)

где - удельное сопротивление, = 30 Н/т; - среднее ускоряющее усилие, = (50-80) Н/т; - удельное сопротивление от подъема, = (0-20) Н/т; - средняя скорость при разгоне, = (7-8,5) км/ч

Вид тяги Масса поезда , т (не более) Скорость, км/ч
расчетная Максимальная
Тепловозная:
на однопутных участках с малым грузооборотом 23-30 85-100
на участках с наибольшим грузооборотом 28-30
в пассажирском движении 800-1200 70-100 140-200
Газотурбовозная в грузовом движении 30-40
Электрическая:
на постоянном токе в грузовом движении
на переменном токе в грузовом движении 110-120
на переменном токе в пассажир- ском движении 800-1000 80-100 160-200

Эффективную мощность (в кВт) – основной энергетический параметр автономного локомотива (тепловоза, газотурбовоза, паровоза), равный мощности его силовой установки, определяют по выражению



где - КПД передачи, = 0,77 для гидропередач, = 0,8 для электрических передач; - коэффициент свободной мощности.

Коэффициент учитывает на локомотивах расход энергии на привод вентилятора холодильной установки, вспомогательных машин (компрессора, вспомогательного генератора и др.) и аппаратов. Для тепловозов коэффициент = 0,90 ÷ 0,92. У газотурбовозов отсутствует мощная холодильная установка, поэтому значение = 0 97. для газотурбовозов, оборудованных дизелем для вспомогательных нужд, = 1.

Мощность электровозов определяют как суммарную мощность на валах тяговых электродвигателей при их работе в часовом и длительном режимах движения. Мощность наряду с другими параметрами используют для выбора энергетической установки проектируемого локомотива. В том случае, когда эффективная мощность установлена техническим заданием или принята по мощности энергетической установки, следует определить массу поезда, при которой локомотив может двигаться со скоростями, рекомендованными МТК РК.

Сцепной вес является суммарной нагрузкой на движущие колесные пары локомотива и характеризует его способность развивать необходимую силу тяги без проскальзывания колес по рельсам.

Сцепной вес (в кН) для грузового локомотива вычисляют при условии его движения по расчетному подъему с установившейся скоростью без боксования из соотношения

, (4)

где - коэффициент сцепления при скорости , - коэффициент использования сцепного веса; для локомотивов с групповым приводом = 1, с индивидуальным = 0,85÷0,92.

Для получения значений коэффициента , близких к единице, рекомендуют использовать поводковые буксы, рядное расположение тяговых двигателей, низкое размещение шкворня, наклонные поводки тягового устройства, мономоторный привод, догружатели - устройства, ликвидирующие разгрузку колесных пар тележки.

Сцепной вес пассажирского локомотива из условия обеспечения заданного ускорения при разгоне поезда определяют по формуле

, (5)

где - полное удельное сопротивление движению поезда в момент трогания с условной скоростью 5-8 км/ч на уклоне i (‰), Н/т;

Удельное сопротивление от ускоряющего усилия, Н/т; ( - ускорение поезда после трогания с места в зависимости от категории, поезда, равное 1200-1800 км/ч 2);

Ускорение поезда, км/м 2 , при действии удельной ускоряющей силы 1 Н/т.

Для расчета можно принять = 80 Н/т. Значения для грузовых и пассажирских поездов равны 12,2 км/ч 2 , электропоездов 12 км/ч 2 , дизель-поездов 11,8 км/ч 2 .

Выбрав значение , проверяют возможность реализации при этом заданного ускорения разгона по уравнению (5) при = 0 с более высокими скоростями движения. Если принятое значение не выдерживается на участке, равном половине пути разгона, то вес увеличивают.

Сцепной вес маневрового локомотива (тепловоза) зависит от характера и условий его работы: сортировочных маневров на горке, вывозных операций на магистральных дорогах и т. д. При горочной работе потребный сцепной вес определяют при трогании поезда с места после остановки у горба горки из соотношения

, (6)

Где - удельное сопротивление движению, равное для грузовых поездов 70 Н/т; - среднее сопротивление при подъеме по надвижной части горки, Н/т.

Сопротивление , для всех видов подвижного состава численно
равно 10-кратной величине подъема, которую находят из выражения

, (7)

Где - подъемы участков надвижной части горки, ‰;

Длины участков надвижной части горки, м;

Длина поезда, м.

В условиях вывозной работы требуемый сцепной вес локомотива находят из уравнения (4) при расчетной скорости = 10÷16 км/ч.

Служебную массу определяют количеством материалов, вложенных в конструкцию машины. У тележечных локомотивов, которых все колесные пары движущие, служебная масса (в т) равна 0,1 . У маневровых локомотивов обычно служебной массы недостаточно для получения расчетного сцепного веса. В этом случае в экипажной части предусматривают дополнительную массу (балласт). Магистральные пассажирские локомотивы, особенно скоростные, имеют служебную массу, которая обеспечивает действительный сцепной вес, превосходящий расчетный. У таких локомотивов можно снизить служебную массу путем уменьшения расхода материалов при их изготовлении. Служебную массу для построенных локомотивов определяют на специальных весах для взвешивания локомотивов. В начальной стадии проектирования служебную массу можно подсчитать по формуле

, (8)

где - удельный показатель служебной массы, рекомендуемый для перспективных локомотивов, кг/кВт.

Для электровозов в показатель вводится мощность часового Режима , кВт. В таблице 4.2 приведены значения удельного показателя служебной массы для современных локомотивов.

Таблица 4.2

Удельные показатели служебной массы

Число колесных пар зависит от массы локомотива и нагрузки от колесной пары на рельсы. Если в расчете использовать служебную массу, то будет определено полное число колесных пар, если сцепной вес - число движущих колесных пар. Для одной секции локомотива число может быть равно 2, 3, 4, 6 и 8. Если больше, то локомотив формируют из двух секций.

Наметив для проектируемого локомотива число колесных пар, необходимо проверить статическую нагрузку на рельсы по выражению

, (9)

где - допускаемая статическая нагрузка от колесной пары на рельсы, кН.
Допускаемая нагрузка зависит от конструкции и состояния верхнего строения пути и устанавливается техническими требованиями МТК РК. На дорогах с рельсами Р50 и Р65, уложенными на деревянных шпалах и щебеночном балласте, допускаются следующие значения = 226 кН для грузовых локомотивов, = 206 кН - для пассажирских. На реконструированных участках допускаемая нагрузка от колесной пары на рельс равна 246 кН.

Диаметр движущих колес локомотивов зависит от многих факторов, из которых надежность и минимальная неподрессоренная масса являются основными.

В настоящее время на тяговом подвижном составе железных дорог СНГ применяют три типоразмера колес: диаметром 1050 и 1220 мм для тепловозов, 950 мм для дизель-поездов и части электропоездов и 1220 и 1250 мм для электровозов. Для унификации ходовых частей экипажей тепловозов и электровозов рекомендуется использовать колеса диаметром 1220 и 1250 мм, что снизит эксплуатационные и ремонтные расходы, увеличит пробег между обточками бандажей, понизит контактные напряжения в рельсах и т. д. Однако при применении колес с большим диаметром возрастает масса колесной пары и увеличивается эксцентриситет главной рамы относительно автосцепки. Требуемый диаметр колеса (мм) подсчитывают по формуле

где - допустимая нагрузка на 1 мм диаметра колеса, равная от 0,2-0,22 до 0,27 кН/мм.

При выборе диаметра колес следует руководствоваться стандартными размерами бандажей для подвижного состава широкой колеи на колесные пары для тепловозов и электровозов. Бандажи толщиной 75 мм устанавливают на колеса с осевой нагрузкой до 206 кН, толщиной 90 мм - на колеса с осевой нагрузкой более 206 кН.

Длину локомотива по осям автосцепок устанавливают в процессе компоновки оборудования. На начальной стадии проектирования длина, мм,

для локомотивов мощностью 1470-2300 кВт;

для локомотивов мощностью свыше 2900 кВт;

В общем случае ориентировочно

Максимальная длина локомотива ограничивается техническими требованиями на ремонтные стойла депо, минимальная - прочностью путевых сооружений. Для проверки используют уравнение

, (14)

где - допускаемая нагрузка на единицу длины пути, равная 73,5 кН/м для эксплуатируемых и 88,5 кН/м для проектируемых локомотивов.

База локомотива - это расстояние между шкворнями или геометрическими центрами тележек одной секции. Она определяется условия компоновки экипажной части «по низу» и надежность сцепляемости автосцепки локомотива и вагона. предварительно база локомотива

где е - числовой коэффициент, равный 0,5-0,54 для экипажной части с длиной до 20 м и 0,55-0,6 длиной свыше 20 м.

База тележки зависит от размеров тягового привода, тяговых электродвигателей и других элементов, размещаемых на тележках. Расстояние между смежными колесными парами у современных тележек локомотивов равно 1,85-2,3 м. Меньшие значения относятся к тележкам с групповыми приводами, большие – с индивидуальными приводами. Исходя из этого, можно выбрать базу тележки до разработки конструкции экипажа: в пределах 3,7-4,6 м для трехосных тележек и 5,5 -7 м для четырехосных тележек с индивидуальным приводом. Для исключения больших ошибок при оценке линейных размеров , и их следует сравнить с аналогичными показателями современных локомотивов (таблица 4.3).

177-167 11,0 10,5

Задание № 4.

Определить основные характеристики проектируемого локомотива согласно варианту:

1. Определить сцепной вес и служебную массу локомотива

2. Определить число осей и диаметр колес локомотива

3. Определить геометрические размеры локомотива

4. Построить тяговую характеристику локомотива

Таблица 4.6. Исходные данные для расчета

СЦЕПНОЙ ВЕС ЛОКОМОТИВА

СЦЕПНОЙ ВЕС ЛОКОМОТИВА

часть общего веса локомотива, передающаяся на его движущие осн. Только эта часть веса используется для создания между движущими колесами и рельсами силы трения, позволяющей превратить работу машины в силу тяги для передвижения поезда; остальная часть веса локомотива, падающая на поддерживающие оси, не способствует увеличению силы тяги, в силу чего стремятся возможно полнее использовать вес локомотива в качестве сцепного, передавая на поддерживающие оси лишь минимальную часть его. Полный вес и С. в. л. основных серий паровозов СССР (вес в тоннах) составляют:

Технический железнодорожный словарь. - М.: Государственное транспортное железнодорожное издательство . Н. Н. Васильев, О. Н. Исаакян, Н. О. Рогинский, Я. Б. Смолянский, В. А. Сокович, Т. С. Хачатуров. 1941 .


Смотреть что такое "СЦЕПНОЙ ВЕС ЛОКОМОТИВА" в других словарях:

    Сцепной вес локомотива сумма всех нагрузок от движущих (сцепных) колёс локомотива на рельсы. Используется для создания силы сцепления между колёсами и рельсами и позволяет превратить окружное усилие на ободе движущих колёс во внешнюю силу… … Википедия

    Часть веса, приходящегося на ведущие (движущие) оси автомобиля, колёсного трактора, локомотива и т. д., передающаяся на путь. С. в, определяет максимально возможное тяговое усилие (тягу) между колёсами и дорогой (рельсами) … Большой энциклопедический политехнический словарь

    СЦЕПНОЙ, сцепная, сцепное (спец.). прил., по знач. связанное с работой чего нибудь в сцепе, в связи с другим. Сцепная мощность трактора. Сцепные оси паровоза. Сцепной вес (вес, приходящийся на ведущие оси локомотива). || Сцепляющийся, соединяемый … Толковый словарь Ушакова

    ОЭЛ7 … Википедия

    Прикладная часть теории тяги поездов, в которой рассматриваются условия движения поезда и решаются задачи, связанные с определением сил, действующих на поезд, и законов движения поезда под воздействием этих сил. Содержание 1 История тяговых… … Википедия