Вытеснил остальные виды силовых установок, однако, работы, направленные на отказ от использования этих агрегатов, наводят на мысль о скорой смене лидирующих позиций.

С начала технического прогресса, когда использование моторов, сжигающих горючее внутри, только начиналось, не было очевидным их превосходство. Паровая машина, как конкурент, содержит в себе массу преимуществ: наряду с тяговыми параметрами, бесшумная, всеядная, легко управляется и настраивается. Но лёгкость, надёжность и экономичность позволили двигателю внутреннего сгорания взять вверх над паром.

Сегодня во главе угла стоят вопросы экологии, экономичности и безопасности. Это заставляет инженеров бросать силы на серийные агрегаты, работающие за счёт возобновляемых источников топлива. В 16 году девятнадцатого века Роберт Стирлинг зарегистрировал двигатель, работающий от внешних источников тепла. Инженеры считают, что этот агрегат способен сменить современного лидера. Двигатель Стирлинга сочетает экономичность, надёжность, работает тихо, на любом топливе, это делает изделие игроком на автомобильном рынке.

Роберт Стирлинг (1790-1878 года жизни):

История двигателя Стирлинга

Изначально, установку разрабатывали с целью заменить машину, работающую за счёт пара. Котлы паровых механизмов взрывались, при превышении допустимых норм давлением. С этой точки зрения Стирлинг намного безопасней, функционирует, используя температурный перепад.

Принцип работы двигателя Стирлинга в поочередной подаче или отборе тепла у вещества, над которым совершается работа. Само вещество заключено в объём закрытого типа. Роль рабочего вещества выполняют газы, либо жидкости. Встречаются вещества, выполняющие роль двух компонентов, газ преобразовывается в жидкость и наоборот. Жидкопоршневой мотор Стирлинга обладает: небольшими габаритами, мощный, вырабатывает большое давление.

Уменьшение и увеличение объёма газа при охлаждении либо нагреве соответственно, подтверждается законом термодинамики, согласно которого все составляющие: степень нагрева, величина занимаемого пространства веществом, сила, действующая на единицу площади, связаны и описываются формулой:

P*V=n*R*T

  • P – сила действия газа в двигателе на единицу площади;
  • V – количественная величина, занимаемая газом в пространстве двигателя;
  • n – молярное количество газа в двигателе;
  • R – постоянная газа;
  • T – степень нагрева газа в двигателе К,

Модель двигателя Стирлинга:


За счёт неприхотливости установок, двигатели подразделяются: твердотопливные, жидкое горючее, солнечная энергия, химическая реакция и другие виды нагрева.

Цикл

Двигатель внешнего сгорания Стирлинга, использует одноимённую совокупность явлений. Эффект от протекающего действия в механизме высок. Благодаря этому есть возможность сконструировать двигатель с неплохими характеристиками в рамках нормальных габаритов.

Необходимо учитывать, что в конструкции механизма предусмотрен нагреватель, холодильник и регенератор, устройство, отвода тепла от вещества и возвращения тепла, в нужный момент.

Идеальный цикл Стирлинга, (диаграмма «температура-объём»):

Идеальные круговые явления:

  • 1-2 Изменение линейных размеров вещества с постоянной температурой;
  • 2-3 Отвод теплоты от вещества к теплообменнику, пространство, занимаемое веществом постоянно;
  • 3-4 Принудительное сокращение пространства, занимаемого веществом, температура постоянна, тепло отводится охладителю;
  • 4-1 Принудительное увеличение температуры вещества, занимаемое пространство постоянно, тепло подводится от теплообменника.

Идеальный цикл Стирлинга, (диаграмма «давление-объём»):

Из расчёта (моль) вещества:

Подводимое тепло:

Получаемое охладителем тепло:

Теплообменник получает тепло (процесс 2-3), теплообменник отдаёт тепло (процесс 4-1):

R – Универсальная постоянная газа;

СV – способность идеального газа удерживать тепло при неизменной величине занимаемого пространства.

За счёт применения регенератора, часть теплоты остается, в качестве энергии механизма, не меняющейся за проходящие круговые явления. Холодильник получает меньше тепла, таким образом, теплообменник экономит тепло нагревателя. Это увеличивает эффективность установки.

КПД кругового явления:

ɳ =

Примечательно, что без теплообменника совокупность процессов Стирлинга осуществима, но его эффективность будет значительно ниже. Прохождение совокупности процессов задом наперёд ведёт к описанию охлаждающего механизма. В этом случае наличие регенератора, обязательное условие, поскольку при прохождении (3-2) невозможно нагреть вещество от охладителя, температура которого значительно ниже. Так же невозможно отдать тепло нагревателю (1-4), температура которого выше.

Принцип работы двигателя

Что бы понять, как работает двигатель Стирлинга, разберёмся в устройстве и периодичности явлений агрегата. Механизм преобразует тепло, полученное от нагревателя, находящегося за пределами изделия в действие силы на тело. Весь процесс происходит благодаря температурному перепаду, в рабочем веществе, находящемся в закрытом контуре.


Принцип действия механизма базируется на расширении за счёт тепла. Непосредственно до расширения, вещество в замкнутом контуре нагревается. Соответственно, перед тем, как сжаться, вещество охлаждают. Сам цилиндр (1) окутан водяной рубашкой (3), ко дну подается тепло. Поршень, совершающий работу (4) помещен в гильзу и уплотнён кольцами. Между поршнем и дном находится механизм вытеснения (2), имеющий значительные зазоры и свободно перемещающийся. Вещество, находящееся в замкнутом контуре, двигается по объёму камеры за счёт вытеснителя. Перемещение вещества ограничено двумя направлениями: дно поршня, дно цилиндра. Движение вытеснителя обеспечивает шток (5), который проходит через поршень и функционирует за счет эксцентрика с запаздыванием на 90° в сравнении с приводом поршня.

  • Позиция «A»:

Поршень расположен в крайнем нижнем положении, вещество охлаждается за счет стенок.

  • Позиция «B»:

Вытеснитель занимает верхнее положение, перемещаясь, пропускает вещество через торцевые щели ко дну, сам охлаждается. Поршень стоит неподвижно.

  • Позиция «C»:

Вещество получает тепло, под действием тепла увеличивается в объёме и поднимает расширитель с поршнем вверх. Совершается работа, после чего вытеснитель опускается на дно, выталкивая вещество и охлаждаясь.

  • Позиция «D»:

Поршень опускается вниз, сжимает охлаждённое вещество, выполняется полезная работа. Маховик служит в конструкции аккумулятором энергии.

Рассмотренная модель без регенератора, поэтому КПД механизма не велико. Тепло вещества после совершения работы отводится в охлаждающую жидкость, используя стенки. Температура не успевает снижаться на нужную величину, поэтому время охлаждения продлевается, скорость мотора маленькая.

Виды двигателей

Конструктивно, есть несколько вариантов, использующих принцип Стирлинга, основными видами считаются:


Конструкция применяет два разных поршня, помещенных в различные контуры. Первый контур используется для нагрева, второй контур применяется для охлаждения. Соответственно, каждому поршню принадлежит свой регенератор (горячий и холодный). Устройство обладает хорошим соотношением мощности к объёму. Недостаток в том, что температура горячего регенератора создает конструктивные сложности.

  • Двигатель «β – Стирлинг»:


Конструкция использует один замкнутый контур, с разными температурами на концах (холодный, горячий). В полости расположен поршень с вытеснителем. Вытеснитель делит пространство на холодную и горячую зону. Обмен холодом и теплом происходит путём перекачивания вещества через теплообменник. Конструктивно, теплообменник выполняется в двух вариантах: внешний, совмещённый с вытеснителем.

  • Двигатель «γ – Стирлинг»:


Поршневой механизм предусматривает применение двух замкнутых контуров: холодного и с вытеснителем. Мощность снимается с холодного поршня. Поршень с вытеснителем с одной стороны горячий, с другой стороны холодный. Теплообменник располагается как внутри, так и снаружи конструкции.

Некоторые силовые установки не похожи на основные виды двигателей:

  • Роторный двигатель Стирлинга.


Конструктивно изобретение с двумя роторами на валу. Деталь совершает вращательные движения в замкнутом пространстве цилиндрической формы. Заложен синергетический подход реализации цикла. Корпус содержит радиальные прорези. В углубления вставлены лопасти с определённым профилем. Пластины надеты на ротор и могут двигаться вдоль оси при вращении механизма. Все детали создают меняющиеся объёмы с выполняющимися в них явлениями. Объёмы различных роторов связаны при помощи каналов. Расположение каналов имеют сдвиг в 90° друг к другу. Сдвиг роторов относительно друг друга составляет 180°.

  • Термоакустический двигатель Стирлинга.


Двигатель использует акустический резонанс для проведения процессов. Принцип основан на перемещении вещества между горячей и холодной полостью. Схема уменьшает количество движущихся деталей, сложность в снятии полученной мощности и поддержании резонанса. Конструкция относится к свободнопоршневому виду мотора.

Двигатель Стирлинга своими руками

Сегодня довольно часто в интернет магазине можно встретить сувенирную продукцию, выполненную в виде рассматриваемого двигателя. Конструктивно и технологично механизмы довольно просты, при желании двигатель Стирлинга легко сконструировать своими руками из подручных средств. В интернете можно найти большое количество материалов: видео, чертежи, расчёты и прочая информация на эту тему.

Низкотемпературный двигатель Стирлинга:


  • Рассмотрим самый простой вариант волнового двигателя, для выполнения которого понадобится консервная банка, мягкая полиуретановая пена, диск, болты и канцелярские скрепки. Все эти материалы легко найти дома, осталось выполнение следующих действий:
  • Возьмите мягкую полиуретановую пену, вырежьте на два миллиметра меньшим диаметром от внутреннего диаметра консервной банки круг. Высота пены на два миллиметра больше половины высоты банки. Поролон играет роль вытеснителя в двигателе;
  • Возьмите крышку банки, в средине проделайте дырку, диаметр два миллиметра. Припаяйте к отверстию полый шток, который будет выполнять, роль направляющей для шатуна двигателя;
  • Возьмите круг, вырезанный из пены, вставьте в средину круга винтик и застопорите с двух сторон. К шайбе припаяйте предварительно выпрямленную скрепку;
  • В двух сантиметрах от центра просверлите дырочку, диаметром три миллиметра, проденьте вытеснитель через центральное отверстие крышки, припаяйте крышку к банке;
  • Сделайте из жести небольшой цилиндр, диаметром полтора сантиметра, припаяйте его к крышке банки таким образом, что бы боковое отверстие крышки оказалось чётко по центру внутри цилиндра двигателя;
  • Сделайте коленчатый вал двигателя из скрепки. Расчёт выполняется таким образом, что бы разнос колен был 90°;
  • Изготовьте стойку под коленчатый вал двигателя. Из полиэтиленовой плёнки сделайте упругую перепонку, наденьте плёнку на цилиндр, продавите её, зафиксируйте;


  • Самостоятельно изготовьте шатун двигателя, один конец выпрямленного изделия выгнете в форме кружка, второй конец вставьте в кусочек ластика. Длина подгоняется таким образом, что бы в крайней нижней точке вала перепонка была втянута, в крайней верхней точке, перепонка максимально вытянута. Настройте другой шатун по такому же принципу;
  • Шатун двигателя с резиновым наконечником приклейте к перепонке. Шатун без резинового наконечника закрепите на вытеснителе;
  • Наденьте на кривошипный механизм двигателя маховик из диска. К банке приделайте ножки, чтобы не держать изделие в руках. Высота ножек позволяет разместить под банкой свечку.

После того, как удалось сделать двигатель Стирлинга дома, мотор запускают. Для этого под банку помещают зажженную свечку, а после того, как банка прогрелась, дают толчок маховику.


Рассмотренный вариант установки можно быстро собрать у себя дома, как наглядное пособие. Если задаться целью и желанием сделать двигатель Стирлинга максимально приближённый к заводским аналогам, в свободном доступе есть чертежи всех деталей. Пошаговое выполнение каждого узла позволит создать работающий макет ни чем не хуже коммерческих версий.

Преимущества

Для двигателя Стирлинга характерны такие плюсы:

  • Для работы двигателя необходим температурный перепад, какое топливо вызывает нагрев не важно;
  • Нет необходимости использовать навесное и вспомогательное оборудование, конструкция двигателя простая и надёжная;
  • Ресурс двигателя, благодаря особенностям конструкции, составляет 100000 часов работы;
  • Работа двигателя не создаёт постороннего шума, поскольку отсутствует детонация;
  • Процесс работы двигателя не сопровождается выбросом отработанных веществ;
  • Работа двигателя сопровождается минимальной вибрацией;
  • Процессы в цилиндрах установки экологически безвредны. Использование правильного источника тепла позволяет сделать двигатель «чистым».

Недостатки

К недостаткам двигателя Стирлинга относятся:

  • Трудно наладить серийное производство, поскольку конструктивно двигатель требует использования большого количества материалов;
  • Высокий вес и большие габариты двигателя, поскольку для эффективного охлаждения надо применять большой радиатор;
  • Для повышения эффективности двигатель форсируют, применяя в качестве рабочего тела сложные вещества (водород, гелий), что делает эксплуатацию агрегата опасным;
  • Высокотемпературная стойкость стальных сплавов и их теплопроводность усложняет процесс изготовления двигателя. Значительные потери тепла в теплообменнике снижают эффективность агрегата, а применение специфических материалов делают изготовление двигателя дорогим;
  • Для регулировки и перехода двигателя с режима на режим надо применять специальные устройства управления.

Использование

Двигатель Стирлинга нашел свою нишу и активно применяется там, где габариты и всеядность важный критерий:

  • Двигатель Стирлинг-электрогенератор.

Механизм преобразования тепла в электрическую энергию. Часто встречаются изделия, используемые в качестве портативных туристических генераторов, установки по использованию солнечной энергии.

  • Двигатель, как насос (электрика).

Двигатель применяют для установки в контур отопительных систем, экономя на электрической энергии.

  • Двигатель, как насос (обогреватель).

В странах с тёплым климатом двигатель используют как обогреватель для помещений.

Двигатель Стирлинга на подводной лодке:


  • Двигатель, как насос (охладитель).

Практически все холодильники в своей конструкции применяют тепловые насосы, устанавливая двигатель Стирлинга, экономятся ресурсы.

  • Двигатель, как насос, создающий сверхнизкие степени нагрева.

Устройство применяют в качестве холодильника. Для этого процесс запускают в обратную сторону. Агрегаты сжижают газ, охлаждают измерительные элементы в точных механизмах.

  • Двигатель для подводной техники.

Подводные корабли Швеции и Японии работают благодаря двигателю.

Двигатель Стирлинга в качестве солнечной установки:


  • Двигатель, как аккумулятор энергии.

Топливо в таких агрегатах, расплавы соли, двигатель применяют, как источник энергии. Мотор по запасу энергии опережает химические элементы.

  • Солнечный двигатель.

Преобразуют энергию солнца в электричество. Вещество в данном случае, водород или гелий. Двигатель ставится в фокусе максимальной концентрации энергии солнца, созданного при помощи параболической антенны.

Обострение глобальных проблем, требующих срочного решения (истощение природных ресурсов, загрязнение окружающей среды и т. д.), привело в конце XX века к необходимости принятия ряда международных и российских законодательных актов в области экологии, природопользования и энергосбережения. Основные требования этих законов направлены на сокращение выбросов СО2, ресурсо- и энергосбережение, перевод автотранспорта на экологически чистые моторные топлива и т.д.

Одним из перспективных путей решения этих задач является разработка и широкое внедрение энергопреобразующих систем на основе двигателей (машин) Стирлинга. Принцип работы таких двигателей был предложен в 1816 году шотландцем Робертом Стирлингом. Это машины, работающие по замкнутому термодинамическому циклу, в котором циклические процессы сжатия и расширения происходят при различных уровнях температур, а управление потоком рабочего тела осуществляется путем изменения его объема.

Двигатель Стирлинга является уникальной тепловой машиной, поскольку его теоретическая мощность равна максимальной мощности тепловых машин (цикла Карно). Он работает за счет теплового расширения газа, за которым следует сжатие газа при его охлаждении. Двигатель содержит некоторый постоянный объем рабочего газа, который перемещается между «холодной» частью (обычно имеющей температуру окружающей среды) и «горячей» частью, которая нагревается за счет сжигания различного топлива или за счет других источников теплоты. Нагрев производится снаружи, поэтому двигатель Стирлинга относят к двигателям внешнего сгорания (ДВПТ). Поскольку, по сравнению с ДВС, в двигателях Стирлинга процесс горения осуществляется вне рабочих цилиндров и протекает равновесно, рабочий цикл реализуется в замкнутом внутреннем контуре при относительно малых скоростях повышения давления в цилиндрах двигателя, плавном характере теплогидравлических процессов рабочего тела внутреннего контура и при отсутствии газораспределительного механизма клапанов.

Необходимо отметить, что за рубежом уже начато производство двигателей Стирлинга, технические характеристики которых превосходят ДВС и газотурбинные установки (ГТУ). Так, двигатели Стирлинга фирм «Philips», «STM Inc.», «Daimler Benz», «Solo», «United Stirling» мощностью от 5 до 1200 кВт имеют к.п.д. более 42%, рабочий ресурс более 40 тыс. часов и удельную массу от 1,2 до 3,8 кг/кВт.

В мировых обзорах по энергопреобразующей технике двигатель Стирлинга рассматривается как наиболее перспективный в XXI веке. Низкий уровень шума, малая токсичность отработанных газов, возможность работы на различных топливах, большой ресурс, хорошие характеристики крутящего момента - все это делает двигатели Стирлинга более конкурентоспособными в сравнении с ДВС.

Где могут применяться двигатели Стирлинга?

Автономные энергетические установки с двигателями Стирлинга (стирлинг-генераторы) могут найти применение в регионах России, где нет запасов традиционных энергоносителей – нефти и газа. В качестве топлива можно использовать торф, древесину, сланцы, биогаз, уголь, отходы сельского хозяйства и лесоперерабатывающей промышленности. Соответственно, исчезает проблема с энергообеспечением многих регионов.

Такие энергетические установки экологически чисты, так как концентрация вредных веществ в продуктах сгорания почти на два порядка ниже, чем у дизельных электростанций. Поэтому стирлинг-генераторы можно устанавливать в непосредственной близости от потребителя, что позволит избавиться от потерь на передачу электроэнергии. Генератор мощностью 100 кВт может обеспечить электроэнергией и теплом любой населенный пункт с населением более 30-40 человек.

Автономные энергетические установки с двигателями Стирлинга найдут широкое применение и в нефтегазовой промышленности РФ при освоении новых месторождений (особенно в условиях Крайнего Севера и шельфа арктических морей, где нужна серьезная энерговооруженность разведочных, буровых, сварочных и других работ). В качестве топлива здесь можно использовать неочищенный природный газ, попутный нефтяной газ и газовый конденсат.

Сейчас в РФ ежегодно пропадает до 10 млрд. куб. м попутного газа. Собирать его сложно и дорого, использовать в качестве моторного топлива для двигателей внутреннего сгорания нельзя из-за постоянно меняющегося фракционного состава. Чтобы газ не загрязнял атмосферу, он попросту сжигается. В то же время его использование в качестве моторного топлива даст существенный экономический эффект.

Энергоустановки мощностью 3-5 кВт целесообразно использовать в системах автоматизации, связи и катодной защиты на магистральных газопроводах. А более мощные (от 100 до 1000 кВт) - для электро- и теплоснабжения больших вахтовых поселков газовиков и нефтяников. Установки свыше 1 тыс. кВт могут применяться на наземных и морских буровых объектах нефтегазовой промышленности.

Проблемы создания новых двигателей

Двигатель, предложенный самим Робертом Стирлингом, имел значительные массо-габаритные характеристики и низкий к.п.д. Из-за сложности процессов в таком двигателе, связанных с непрерывным движением поршней, первый упрощенный математический аппарат был разработан только в 1871 году пражским профессором Г. Шмидтом. Предложенный им метод расчета основывался на идеальной модели цикла Стирлинга и позволял создавать двигатели с к.п.д. до 15%. Лишь к 1953 году голландской фирмой «Филипс» были созданы первые высокоэффективные двигатели Стирлинга, превосходящие по характеристикам двигатели внутреннего сгорания.

В России попытки создания отечественных двигателей Стирлинга предпринимались неоднократно, однако успеха не имели. Есть несколько основных проблем, сдерживающих их разработку и широкое применение.

Прежде всего это создание адекватной математической модели проектируемой машины Стирлинга и соответствующего метода расчета. Сложность расчета определяется сложностью реализации термодинамического цикла Стирлинга в реальных машинах, обусловленной нестационарностью тепломассового обмена во внутреннем контуре - вследствие непрерывного движения поршней.

Отсутствие адекватных математических моделей и методов расчета - главная причина неудач ряда зарубежных и отечественных предприятий в разработке как двигателей, так и холодильных машин Стирлинга. Без точного математического моделирования доводка проектируемых машин превращается в многолетние изнурительные экспериментальные исследования.

Еще одна проблема заключается в создании конструкций отдельных узлов, сложностях с уплотнениями, регулированием мощности и т.д. Трудности конструктивного исполнения обусловлены применяемыми рабочими телами, в качестве которых используется гелий, азот, водород и воздух. Гелий, например, обладает сверхтекучестью, что диктует повышенные требования к уплотняющим элементам рабочих поршней, и т. д.

Третья проблема - высокий уровень технологии производства, необходимость применения жаростойких сплавов и металлов, новых методов их сварки и пайки.

Отдельный вопрос - изготовление регенератора и насадки для него для обеспечения, с одной стороны, высокой теплоемкости, а с другой - низкого гидравлического сопротивления.

Отечественные разработки машин Стирлинга

В настоящее время в России накоплен достаточный научный потенциал для создания высокоэффективных двигателей Стирлинга. Значительные результаты были достигнуты в ООО «Инновационно-исследовательский центр «Стирлинг-технологии». Специалистами были проведены теоретико-экспериментальные исследования для разработки новых методов расчета высокоэффективных двигателей Стирлинга. Основные направления работ связаны с применением двигателей Стирлинга в когенерационных установках и системах использования теплоты отработанных газов, например в мини-ТЭЦ. В результате были созданы методики разработки и опытные образцы двигателей мощностью 3 кВт.

Особое внимание в ходе исследований уделялось проработке отдельных узлов машин Стирлинга и их конструктивного исполнения, а также созданию новых принципиальных схем установок различного функционального назначения. Предлагаемые технические решения с учетом того, что машины Стирлинга менее дороги в эксплуатации, позволяют повысить экономическую эффективность применения новых двигателей по сравнению с традиционными преобразователями энергии.

Производство двигателей Стирлинга является экономически целесообразным с учетом практически неограниченного спроса на экологически чистое и высокоэффективное энергетическое оборудование как в России, так и за рубежом. Однако без участия и поддержки государства и крупного бизнеса проблема их серийного производства не может быть решена в полном объеме.

Как помочь производству двигателей Стирлинга в России?

Очевидно, что инновационная деятельность (особенно освоение базисных инноваций) - сложный и рискованный вид хозяйственной деятельности. Поэтому она должна опираться на механизм государственной поддержки, особенно «на старте», с последующим переходом на обычные рыночные условия.

Механизм создания в России крупномасштабного производства машин Стирлинга и энергопреобразующих систем на их основе мог бы включать:
- прямое долевое бюджетное финансирование инновационных проектов по машинам Стирлинга;
- косвенные меры поддержки за счет освобождения продукции, выпускаемой по стирлинг-проектам, от НДС и других налогов федерального и регионального уровней в течение первых двух лет, а также предоставление налогового кредита по такой продукции на последующие 2-3 года (учитывая, что издержки освоения принципиально новой продукции нецелесообразно включать в ее цену, т.е. в расходы производителя или потребителя);
- исключение из налогооблагаемой базы по налогу на прибыль вклада предприятия в финансирование стирлинг-проектов.

В дальнейшем, на этапе устойчивого продвижения энергетического оборудования на основе машин Стирлинга на внутреннем и внешнем рынках, восполнение капиталов для расширения производства, технического переоснащения и поддержки очередных проектов по производству новых типов оборудования может осуществляться за счет прибыли и продажи акций успешно освоенного производства, кредитных ресурсов коммерческих банков, а также привлечения иностранных инвестиций.

Можно предположить, что благодаря наличию технологической базы и накопленного научного потенциала в проектировании машин Стирлинга, при разумной финансовой и технической политике Россия может уже в ближайшем будущем стать мировым лидером в области производства новых экологически чистых и высокоэффективных двигателей.

Одним из перспективных источников механической энергии для автомобилей является двигатель внешнего сгорания, разработанный уроженцем Шотландии Робертом Стирлингом пару веков назад. Двигатель внешнего сгорания Стирлинга по принципу работы сильно отличается от привычного для всех ДВС. Но на какое-то время после разработки о нём благополучно забыли.

История создания

В 1816 году уроженец Шотландии Роберт Стирлинг запатентовал тепловую машину, которую сегодня называют в честь своего создателя. Однако сама идея двигателей горячего воздуха была придумана вовсе не им. Но первый осознанный проект по созданию такого агрегата реализовал именно Стирлинг.

Он усовершенствовал систему, добавив в неё очиститель, в технической литературе называвшийся теплообменником. Благодаря этому сильно возросла производительность мотора благодаря удержанию его в тепле. Эта модель для того времени была признана самой прочной, поскольку никогда не взрывалась.

Несмотря на такой быстрый успех продвижения модели, в начале двадцатого столетия от дальнейшего развития двигателя внешнего сгорания отказались из-за его себестоимости в пользу двигателя внутреннего сгорания.

Двигатель Стирлинга: принцип работы и модификации

Принцип работы любого теплового мотора заключается в том, что для получения газа в расширенном состоянии нужны немалые механические усилия. В качестве наглядного примера можно привести опыт с двумя кастрюлями, согласно которому их наполняют холодной и горячей водой. Опускают в холодную воду бутылку с закрученной пробкой. После этого бутылку переносят в горячую воду.

При таком перемещении газ в бутылке совершает механическую работу и выталкивает пробку из горлышка. Первая модель двигателя внешнего сгорания работала по точно такому же принципу. Однако позже создатель осознал, что часть выделяемого тепла можно использовать для подогрева. Производительность агрегата от этого только возросла.

Чуть позже инженер из Швеции Эриксон усовершенствовал конструкцию, выдвинув идею об охлаждении и нагревании газа при постоянном давлении вместо объёма. Это позволило двигателю «продвинуться по карьерной лестнице» и начать использоваться в шахтах и типографиях. Для экипажей и транспортных средств агрегат оказался слишком тяжёлым.

На рисунке наглядно отображается рабочий цикл двигателя Стирлинга.

Как работает двигатель Стирлинга? Он преобразует тепловую энергию, подводимую извне, в полезную механическую работу. Этот процесс происходит за счёт изменения температуры газа или жидкости, циркулирующих в замкнутом объёме. В нижней части агрегата рабочее вещество нагревается, увеличивается в объёме и выталкивает поршень вверх.

Горячий воздух поступает в верхнюю часть мотора и охлаждается с помощью радиатора. Давление рабочего тела понижается, а поршень опускается для повторения всего цикла. Система полностью герметична, благодаря чему рабочее вещество не расходуется, а лишь перемещается внутри цикла.

Кроме того, существуют моторы с открытым циклом, в которых регулирование потоком реализуется с помощью клапанов. Эти модели называют двигателем Эриксона. В целом принцип работы двигателя внешнего сгорания схож с ДВС. При низких температурах в нём происходит сжатие и наоборот. Нагрев же осуществляется по-разному.

Тепло в двигателе внешнего сгорания подводится через стенку цилиндра извне. Стирлинг догадался применять периодическое изменение температуры с вытеснительным поршнем. Этот поршень перемещает газы с одной полости цилиндра в другую. При этом с одной стороны постоянно поддерживаются низкие температуры, а с другой - высокие. При перемещении поршня вверх газ перемещается из горячей в холодную полость.

Система вытеснителя в двигателе соединена с рабочим поршнем, который сжимает газ в холоде и позволяет расширяться в тепле. Полезная работа совершается как раз благодаря сжатию в более низких температурах. Непрерывность обеспечивается кривошипно-шатунным механизмом. Особых границ между стадиями цикла не наблюдается. Благодаря этому КПД двигателя Стирлинга не уменьшается.

Некоторые детали работы двигателя

В теории подводить энергию в двигатель внешнего сгорания может любой источник тепла (солнце, электричество, топливо). Принцип работы тела двигателя заключается в использовании гелия, водорода или воздуха. Термическим максимально возможным КПД обладает идеальный цикл. КПД при этом составляет от 30 до 40 %. Эффективный регенератор может обеспечить более высокий КПД. Встроенные теплообменники обеспечивают регенерацию, обмен и охлаждение в современных двигателях. Их преимуществом является работа без масел. В целом смазки двигателю необходимо немного. Среднее давление в цилиндре варьируется от 10 до 20 МПа. Необходима хорошая уплотнительная система и возможность попадания масла в рабочие полости.

Согласно теоретическим расчётам эффективность двигателя Стирлинга сильно зависима от температуры и может достигать даже 70 %. Самые первые реализованные в металле образцы двигателя обладали низким КПД, поскольку варианты теплоносителя были неэффективны и ограничивали максимальную температуру нагрева, отсутствовали конструкционные материалы, устойчивые к высокому давлению. Во второй половине XX века двигатель с ромбическим приводом во время испытаний превысил показатель 35 % КПД на водном теплоносителе и с температурой 55 градусов по Цельсию. Совершенствование конструкции в некоторых экспериментальных образцах позволило достичь практически 39 % КПД. Почти все современные бензиновые двигатели, имеющие аналогичную мощность, обладают КПД 28 — 30 %. Турбированные дизели достигают около 35 %. Самые современные образцы двигателей Стирлинга, разработанные компанией Mechanical Technology Inc в США, показывают эффективность до 43 %.

После освоения жаропрочной керамики и других инновационных материалов появится возможность ещё сильнее увеличить температуру среды. КПД может при таких условиях достичь даже 60 %.

Существует несколько модификаций двигателя внешнего сгорания Стирлинга.

Модификация «Альфа»

Такой двигатель состоит из горячего и холодного раздельных силовых поршней, находящихся в собственных цилиндрах. К цилиндру с горячим поршнем поступает тепло, а холодный располагается в охлаждающем теплообменнике.

Модификация «Бета»

В этом варианте двигателя цилиндр, в котором расположился поршень, с одной стороны нагревается, а другой охлаждается. Внутри цилиндра двигаются вытеснитель и силовой поршень. Вытеснитель предназначен для изменения объёма рабочего газа. Регенератор же выполняет возвращение остывшего рабочего вещества в нагретую полость двигателя.

Модификация «Гамма»

Вся нехитрая конструкция модификации «Гамма» выполнена из двух цилиндров. Первый из них полностью холодный. В нём совершает движение силовой поршень. А второй - холодный только с одной стороны, а с другой - нагретый. Он служит для перемещения механизма вытеснителя. Регенератор циркуляции холодного газа в этой модификации может быть общим для обоих цилиндров и быть включённым в конструкцию вытеснителя.

Преимущества двигателя внешнего сгорания

Этот вид двигателей неприхотлив в плане топлива, поскольку основой его работы является перепад температур. Чем вызван этот перепад — особого значения не имеет. Двигатель Стирлинга имеет простую конструкцию и не нуждается в дополнительных системах и навесном оборудовании (стартер, коробка передач). Некоторые особенности устройства двигателя являются гарантией долгого срока эксплуатации: двигатель может работать непрерывно в течении примерно ста тысяч часов. Ещё одним серьёзным преимуществом двигателя внешнего сгорания является бесшумность. Она обусловлена тем, что в цилиндрах отсутствует детонация и нет необходимости в выводе отработавших газов. Особенно выделяется по этому параметру модификация «Бета». Её конструкция оснащена ромбовидным кривошипно-шатунным механизмом, который обеспечивает отсутствие вибраций во время работы. И, наконец, экологичность. В цилиндрах двигателя отсутствуют процессы, способные негативно влиять на окружающую среду.

При выборе альтернативных источников тепла (энергии солнца) двигатель Стирлинга превращается в разновидность экологически чистого силового агрегата.

Недостатки двигателя внешнего сгорания

Массовый выпуск таких двигателей в настоящее время невозможен. Основная проблема - это материалоёмкость конструкции. Охлаждение рабочего тела двигателя требует установку радиаторов с большими объёмами. Вследствие этого увеличиваются размеры. Использование сложных видов рабочего тела вроде водорода или гелия поднимает вопрос о безопасности двигателя. Теплопроводность и температурная стойкость должны быть на высоком уровне. Тепло к рабочему объёму поступает через теплообменники. Таким образом, часть тепла теряется по дороге. При изготовлении теплообменники приходится использовать термостойкие металлы. При этом металлы должны быть устойчивы к высокому давлению. Все эти материалы стоят дорого и долго обрабатываются. Принципы изменения режимов двигателя внешнего сгорания сильно отличаются от традиционных. Требуется разработка специальных управляющих устройств. Изменение мощности вызывается изменением давления в цилиндрах и угла фаз между вытеснителем и силовым поршнем. Также можно изменить ёмкость полости с рабочим телом.

Примеры реализации двигателей внешнего сгорания на автомобилях

Работоспособные модели такого двигателя были выпущены в свет, несмотря на все сложности изготовления. В 50 года XX века у автомобилестроительных компаний появилась заинтересованность в этой разновидности силового агрегата. В основном реализацией двигателей Стирлинга на автомобилях занимались Ford Motor Company и Volkswagen Group. Шведская компания UNITED STIRLING разработала такой двигатель, в котором разработчики старались чаще использовать серийные агрегаты и узлы (коленвал, шатуны). Был разработан четырёхцилиндровый V-образный двигатель, обладавший удельной массой 2,4 кг/кВт. Аналогичной массой обладает компактный дизель. Двигатель попробовали устанавливать на семитонные грузовые фургоны.

Наиболее выделяющимся успешным образцом стал Philips 4-125DA, доступный для установки на легковые автомобили. Рабочая мощность двигателя составляла 173 лошадиных силы. Размеры несильно отличались от обычного бензинового ДВС.

Компания General Motors разработала восьмицилиндровый V-образный двигатель внешнего сгорания с серийным кривошипно-шатунным механизмом. В 1972 году ограниченная версия автомобилей Ford Torino оснащалась таким двигателем. Причём расход топлива снизился на целых 25 % по сравнению с предыдущими моделями. Сегодня несколько зарубежных компаний пытаются совершенствовать конструкцию этого двигателя с целью адаптации для серийного производства и установки на легковые автомобили.

Всего около ста лет назад двигателям внутреннего сгорания пришлось в жестокой конкурентной борьбе завоевывать то место, которое они занимают в современном автомобилестроении. Тогда их превосходство отнюдь не представлялось столь очевидным, как в наши дни. Действительно, паровая машина - главный соперник бензинового мотора - обладала по сравнению с ним огромными достоинствами: бесшумностью, простотой регулирования мощности, прекрасными тяговыми характеристиками и поразительной «всеядностью», позволяющей работать на любом виде топлива от дров до бензина. Но в конечном итоге экономичность, легкость и надежность двигателей внутреннего сгорания взяли верх и заставили примириться с их недостатками, как с неизбежностью.
В 1950-х годах с появлением газовых турбин и роторных двигателей начался штурм монопольного положения, занимаемого двигателями внутреннего сгорания в автомобилестроении, штурм, до сих пор не увенчавшийся успехом. Примерно в те же годы делались попытки вывести на сцену новый двигатель, в котором поразительно сочетается экономичность и надежность бензинового мотора с бесшумностью и "всеядностью" паровой установки. Это - знаменитый двигатель внешнего сгорания, который шотландский священник Роберт Стирлинг запатентовал 27 сентября 1816 года (английский патент № 4081).

Физика процесса

Принцип действия всех без исключения тепловых двигателей основан на том, что при расширении нагретого газа совершается большая механическая работа, чем требуется на сжатие холодного. Чтобы продемонстрировать это, достаточно бутылки и двух кастрюль с горячей и холодной водой. Сначала бутылку опускают в ледяную воду, а когда воздух в ней охладится, горлышко затыкают пробкой и быстро переносят в горячую воду. Через несколько секунд раздается хлопок и нагреваемый в бутылке газ выталкивает пробку, совершая механическую работу. Бутылку можно снова возвратить в ледяную воду - цикл повторится.
в цилиндрах, поршнях и замысловатых рычагах первой машины Стирлинга почти в точности воспроизводился этот процесс, пока изобретатель не сообразил, что часть тепла, отнимаемого у газа при охлаждении, можно использовать для частичного подогрева. Нужна лишь какая-то емкость, в которой можно было бы запасать тепло, отнятое у газа при охлаждении, и снова отдавать ему при нагревании.
Но, увы, даже это очень важное усовершенствование не спасло двигатель Стирлинга. К 1885 году достигнутые здесь результаты были весьма посредственны: 5-7 процентов к.п.д., 2 л. с. мощности, 4 тонны веса и 21 кубометр занимаемого пространства.
Двигатели внешнего сгорания не были спасены даже успехом другой конструкции, разработанной шведским инженером Эриксоном. В отличие от Стирлинга, он предложил нагревать и охлаждать газ не при постоянном объеме, а при постоянном давлении. 8 1887 году несколько тысяч небольших эриксоновских двигателей отлично работало в типографиях, в домах, на шахтах, на судах. Они наполняли водонапорные баки, приводили а действие лифты. Эриксон пытался даже приспособить их для привода экипажей, но они оказались чересчур тяжелыми. В России до революции большое количество таких двигателей выпускалось под названием «Тепло и сила».

Двигатели внешнего сгорания

Важным элементом реализации программы энергосбережения является обеспечение автономными источниками электроэнергии и тепла небольших жилых образований и удаленных от централизованных сетей потребителей. Для решения этих задач как нельзя лучше подходят инновационные установки для генерации электроэнергии и тепла на основе двигателей внешнего сгорания. В качестве топлива может использоваться как традиционные виды топлива, так и попутный нефтяной газ, биогаз, получаемый из древесных стружек и пр.

На протяжении последних 10 лет отмечались повышения цен на ископаемое топливо, повышенное внимание к выбросам СО 2 , а также растущее желание перестать зависеть от ископаемого топлива и полностью обеспечивать себя энергией. Это стало следствием развития огромного рынка технологий, способных производить энергию из биомассы.

Двигатели внешнего сгорания были изобретены почти 200 лет тому назад, в 1816 году. Вместе с паровым двигателем, двух- и четырехтактным двигателем внутреннего сгорания, двигатели внешнего сгорания считаются одними из основных типов двигателей. Они были разработаны с целью создания двигателей, которые были бы более безопасными и производительными, чем паровой двигатель. В самом начале 18-го века отсутствие подходящих материалов приводило к многочисленным случаям со смертельным исходом в связи со взрывами паровых двигателей, находящихся под давлением.

Значительный рынок для двигателей внешнего сгорания сформировался во второй половине 18-го века, в частности, в связи с более мелкими сферами применения, где их можно было безопасно эксплуатировать без необходимости в услугах квалифицированных операторов.

После изобретения двигателя внутреннего сгорания в конце 18-го века рынок для двигателей внешнего сгорания исчез. Стоимость производства двигателя внутреннего сгорания в сравнении со стоимостью производства внешнего сгорания ниже. Основной недостаток двигателей внутреннего сгорания заключается в том, что для их работы необходимо чистое, ископаемое топливо, увеличивающее выбросы СО2, топливо. Однако, до недавнего времени стоимость ископаемого топлива была низкой, а выбросам СО2 не уделялось должного внимания.

Принцип работы двигателя внешнего сгорания

В отличие от широко известного процесса внутреннего сгорания, при котором топливо сжигается внутри двигателя, двигатель внешнего сгорания, приводится в действие внешним источником тепла. Или, точнее говоря, она приводится в действие разностями температур, создаваемыми внешними источниками нагревания и охлаждения.

Этими внешними источниками нагревания и охлаждения могут служить отработанные газы биомассы и охлаждающая вода соответственно. Процесс приводит к вращению генератора, монтированного на двигателе, посредством чего производится энергия.


Все двигатели внутреннего сгорания приводятся в действие разностями температур. Бензиновые, дизельные двигатели и двигатели внешнего сгорания основаны на той особенности, что для сжатия холодного воздуха необходимо меньше усилий, чем для сжатия горячего воздуха.

Бензиновые и дизельные двигатели всасывают холодный воздух и сжимают этот воздух, прежде чем он подогревается в процессе внутреннего сгорания, который происходит внутри цилиндра. После подогревания воздуха над поршнем поршень перемещается вниз, посредством чего воздух расширяется. Так как воздух горячий, сила, действующая на шток поршня, велика. Когда поршень доходит до низа, клапаны открываются и горячие выхлопы заменяются новым, свежим, холодным воздухом. При движении поршня вверх холодный воздух сжимается, причем сила, действующая на шток поршня, меньше, чем при его движении вниз.

Двигатель внешнего сгорания работает в соответствии с немного другим принципом. В нем нет клапанов, он герметически запаян, а воздух подогревается и охлаждается при помощи теплообменных аппаратов горячего и холодного контура. Встроенный насос, приводимый в действие движением поршня, обеспечивает движение воздуха туда и обратно между этими двумя теплообменными аппаратами. Во время охлаждения воздуха в теплообменном аппарате холодного контура поршень сжимает воздух.

После сжатия воздух затем подогревается в теплообменном аппарате горячего контура, прежде чем поршень начинает двигаться в обратном направлении и использовать расширение горячего воздуха для приведения в действие двигателя.