Батареи это устройства, преобразующее химическую энергию в электрическую энергию. Они имеют 2 электрода, между ними идет химическая реакция, которую используют или производят электроны. Электроды связаны между собой раствором называемым электролитом, с помощью которого ионы могут перемещаться, совершая электрическую цепь. Электроны образуются на аноде и могут проходить через внешнюю цепь на катод, это движение электронов электрического тока, которые могут быть использованы для совершения работы простых устройств.
В нашем случае батарея может быть сформирована с помощью двух реакций: (1) реакции с алюминием, который генерирует электроны на один электрод, и (2) реакции с кислородом, что использует электроны на другом электроде. Чтобы помочь электронам в батарее, получить доступ к кислороду в воздухе, вы можете сделать вторым электродом материал, который может проводить электричество, но не является активным, например уголь, который состоит в основном из углерода. Активированный уголь очень пористый и это порой приводит к большой площади поверхности, которая подводится воздействию атмосфер. Один грамм активированного угля может быть большей площади, чем целое футбольное поле.
В этом опыте вы можете построить аккумулятор , который использует эти две реакции и самое удивительное, что эти батареи могут питать небольшой мотор или лампочку. Для этого вам понадобится: алюминиевая фольга, ножницы, активированный уголь, металлические ложки, бумажные полотенца, соль, маленькая чашечка, вода, 2 электрических провода с зажимами на концах и небольшое электрическое устройство, такое как двигатель или светодиод. Отрежьте кусочек алюминиевой фольги размером, что составит примерно 15Х15см. , подготовьте насыщенный раствор, смесь соли в небольшой чашке с водой пока соль не перестанет растворяться, сложите бумажное полотенце на четверть и пропитайте его рассолом. Положите это полотенце на фольгу, добавьте около ложки активированного угля на вершину бумажного полотенца, налейте рассол на уголь, чтобы смочить его. Будьте уверены, что уголь является мокрым повсюду. Чтобы не прикасаться к воде напрямую вы должны меть 3 слоя как в бутерброде. Подготовьте свои электрические устройства для использования, один конец электрического провода прикрепите к загрузке, а другой конец провода подключим к алюминиевой фольге. Плотно прижмем второй провод к куче угля и смотрим, что происходит, если аккумулятор работает нормально, то вполне вероятно, что вам понадобится еще один элемент для включения вашего устройства. Попробуйте увеличить площадь контакта между вашим проводом и древесным углем, сложив батарею и сильно сдавив. Если вы используете двигатель, вы также можете ему помочь стартонуть крутанув вал пальцами.
Первая современная электрическая батарея была сделана из ряда электрохимических ячеек и называется вольтовым столбом. Повторите шаг первый и третий, чтобы построить дополнительный алюминиево-воздушный элемент , соединив 2 или 3 воздушно-алюминиевых элемента друг с другом вы получите более мощный аккумулятор. Используйте мультиметр для измерения напряжения и тока полученного с вашей батареи.
Как нужно изменить вашу батарею, чтобы она стала давать большее напряжение или больший ток – рассчитайте выходную мощность от вашего аккумулятора путем произведения его напряжения и тока. Попробуйте подключить и другие устройства к вашему аккумулятору.

Кандидат технических наук Е. КУЛАКОВ, кандидат технических наук С. СЕВРУК, кандидат химических наук А. ФАРМАКОВСКАЯ.

Энергоустановка на воздушно-алюминиевых элементах занимает лишь часть багажника автомобиля и обеспечивает дальность его пробега до 220 километров.

Принцип действия воздушно-алюминиевого элемента.

Работой энергоустановки на воздушно-алюминиевых элементах управляет микропрецессор.

Малогабаритный воздушно-алюминиевый элемент на солевом электролите может заменить четыре батарейки.

Наука и жизнь // Иллюстрации

Энергоустановка ЭУ 92ВА-240 на воздушно-аллюминиевых элементах.

Человечество, судя по всему, не собирается отказываться от автомобилей. Мало того: автомобильный парк Земли может в скором времени увеличиться примерно вдвое - главным образом за счет массовой автомобилизации Китая.

Между тем несущиеся по дорогам машины выбрасывают в атмосферу тысячи тонн угарного газа - того самого, присутствие которого в воздухе в количестве, большем десятой доли процента, для человека смертельно. А помимо угарного газа - и многие тонны окислов азота и прочих ядов, аллергенов и канцерогенов - продуктов неполного сгорания бензина.

Во всем мире давно ведется поиск альтернатив автомобилю с двигателем внутреннего сгорания. И наиболее реальной из них считается электромобиль (см. "Наука и жизнь" №№ 8, 9, 1978 г.). Первые в мире электромобили были созданы во Франции и в Англии в самом начале 80-х годов прошлого века, то есть на несколько лет раньше, чем автомобили с двигателями внутреннего сгорания (ДВС). И появившийся, например, в 1899 году в России первый самодвижущийся экипаж был именно электрическим.

Тяговый электродвигатель в таких электрических автомобилях получал питание от непомерно тяжелых батарей свинцовых аккумуляторов с энергоемкостью всего лишь около 20 ватт-часов (17,2 килокалории) на килограмм. Значит, для того, чтобы "прокормить" двигатель мощностью в 20 киловатт (27 лошадиных сил) хотя бы в течение часа, требовался свинцовый аккумулятор массой в 1 тонну. Эквивалентное же ему по запасенной энергии количество бензина занимает бензобак емкостью всего в 15 литров. Вот почему лишь с изобретением ДВС производство автомобилей стало быстро расти, а электромобили десятилетиями считались тупиковой ветвью автомобилестроения. И только возникшие перед человечеством экологические проблемы заставили конструкторов вернуться к идее электромобиля.

Сама по себе замена ДВС электродвигателем, конечно, заманчива: при одной и той же мощности электродви гатель и массой полегче, и в управлении проще. Но даже теперь, спустя более чем 100 лет после первого появления автомобильных аккумуляторов, энергоемкость (то есть запасенная энергия) даже самых лучших из них не превышает 50 ватт-часов (43 килокалории) на килограмм. И потому весовым эквивалентом бензобака остаются сотни килограммов аккумуляторных батарей.

Если же учесть необходимость многочасовой зарядки аккумуляторов, ограниченное число циклов заряд-разряд и, как следствие, относительно короткий срок службы, а также проблемы с утилизацией отслуживших батарей, то приходится признать, что на роль массового транспорта аккумуляторный электромобиль пока непригоден.

Настал, однако, момент сказать, что электродвигатель может получать энергию и от другого рода химических источников тока - гальванических элементов. Наиболее известные из них (так называемые батарейки) работают в переносных приемниках и диктофонах, в часах и карманных фонариках. В основе работы такой батарейки, так же, как и любого другого химического источника тока, лежит та или иная окислительно-восстановительная реакция. А она, как известно из школьного курса химии, сопровождается передачей электронов от атомов одного вещества (восстановителя) к атомам другого (окислителя). Такую передачу электронов можно осуществить через внешнюю цепь, например, через лампочку, микросхему или мотор, и тем самым заставить электроны работать.

С этой целью окислительно-восстановительную реакцию проводят как бы в два приема - разбивают ее, так сказать, на две полуреакции, протекающие одновременно, но в разных местах. На аноде восстановитель отдает свои электроны, то есть окисляется, а на катоде окислитель эти электроны принимает, то есть восстанавливается. Сами же электроны, перетекая с катода на анод через внешнюю цепь, как раз и совершают полезную работу. Процесс этот, разумеется, небесконечен, поскольку и окислитель, и восстановитель постепенно расходуются, образуя новые вещества. И в результате источник тока приходится выбрасывать. Можно, правда, непрерывно или время от времени выводить из источника образовавшиеся в нем продукты реакции, а взамен подавать в него все новые и новые реагенты. Они в этом случае выполняют роль топлива, и именно потому такие элементы носят название топливных (см. "Наука и жизнь" № 9, 1990 г.).

Эффективность подобного источника тока определяется прежде всего тем, насколько удачно выбраны для него и сами реагенты, и режим их работы. С выбором окислителя особых проблем нет, поскольку окружающий нас воздух состоит более чем на 20% из прекрасного окислителя - кислорода. Что же касается восстановителя (то есть горючего), то с ним дело обстоит несколько сложнее: его приходится возить с собой. И потому при его выборе приходится прежде всего исходить из так называемого массо-энергетического показателя - полезной энергии, выделяемой при окислении единицы массы.

Наилучшими в этом отношении свойствами обладает водород, вслед за которым идут некоторые щелочные и щелочноземельные металлы, а затем - алюминий. Но газообразный водород пожаро- и взрывоопасен, а под большим давлением способен просачиваться через металлы. Сжижать его можно лишь при очень низких температурах, а хранить - достаточно сложно. Щелочные и щелочноземельные металлы тоже пожароопасны и, кроме того, быстро окисляются на воздухе и растворяются в воде.

У алюминия ни одного из этих недостатков нет. Всегда покрытый плотной пленкой оксида, он при всей своей химической активности почти не окисляется на воздухе. Алюминий сравнительно дешев и нетоксичен, его хранение не создает никаких проблем. Вполне разрешима и задача его введения в источник тока: из металла-горючего изготавливают анодные пластины, которые периодически - по мере их растворения - заменяют.

И, наконец, электролит. Он в данном элементе может быть любым водным раствором: кислотным, щелочным или солевым, поскольку алюминий реагирует и с кислотами, и со щелочами, а при нарушении оксидной пленки растворяется и в воде. Но использовать предпочтительнее щелочной электролит: это проще для проведения второй полуреакции - восстановления кислорода. В кислой среде он восстанавливается тоже, но лишь в присутствии дорогостоящего платинового катализатора. В щелочной же среде можно обойтись куда более дешевым катализатором - оксидом кобальта или никеля или активированным углем, которые вводятся непосредственно в пористый катод. Что же касается солевого электролита, то он обладает меньшей электропроводностью, а выполненный на его основе источник тока - примерно в 1,5 раза меньшей энергоемкостью. Поэтому в мощных автомобильных батареях целесообразно применять щелочной электролит.

У него, однако, тоже есть недостатки, главный из из которых - коррозия анода. Идет она параллельно с основной - токообразующей - реакцией и растворяет алюминий, преобразуя его в алюминат натрия с одновременным выделением водорода. Правда, с мало-мальски ощутимой скоростью эта побочная реакция идет лишь при отсутствии внешней нагрузки, именно потому воздушно-алюминиевые источники тока нельзя - в отличие от аккумуляторов и батареек - долго держать заряженными в режиме ожидания работы. Раствор щелочи в этом случае приходится из них сливать. Но зато при нормальном токе нагрузки побочная реакция почти неощутима и коэффициент полезного использования алюминия достигает 98%. Сам же щелочной электролит отходом при этом не становится: отфильтровав от него кристаллы гидроксида алюминия, этот электролит можно снова заливать в элемент.

Есть в применении щелочного электролита в воздушно-алюминиевом источнике тока и еще один недостаток: в процессе его работы расходуется довольно много воды. Это повышает концентрацию щелочи в электролите и могло бы постепенно изменять электрические характеристики элемента. Существует, однако, такой интервал концентраций, в котором эти характеристики практически не меняются, и если работать именно в нем, то достаточно лишь время от времени добавлять в электролит воду. Отходов в привычном смысле этого слова при работе воздушно-алюминиевого источника тока не образуется. Ведь получаемый при разложении алюмината натрия гидроксид алюминия - это просто белая глина, то есть продукт не только абсолютно чистый экологически, но и весьма ценный как сырье для многих отраслей промышленности.

Именно из него, например, обычно производят алюминий, сначала нагревая до получения глинозема, а затем подвергая расплав этого глинозема электролизу. Поэтому есть возможность организовать замкнутый ресурсосберегающий цикл эксплуатации воздушно-алюминиевых источников тока.

Но гидроксид алюминия обладает и самостоятельной коммерческой ценностью: он необходим при производстве пластмасс и кабелей, лаков, красок, стекол, коагулянтов для очистки воды, бумаги, синтетических ковров и линолеумов. Его используют в радиотехнической и фармацевтической промышленности, при производстве всякого рода адсорбентов и катализаторов, при изготовлении косметики и даже ювелирных изделий. Ведь очень многие искусственные драгоценные камни - рубины, сапфиры, александриты - выполняются на основе оксида алюминия (корунда) с незначительными примесями хрома, титана или бериллия соответственно.

Стоимость "отходов" воздушно-алюминиевого источника тока вполне соизмерима со стоимостью исходного алюминия, а масса их при этом в три раза больше массы исходного алюминия.

Почему же, несмотря на все перечисленные достоинства кислородно-алюминиевых источников тока, они так долго - до самого конца 70-х годов - всерьез не разрабатывались? Всего только потому, что они не были востребованы техникой. И лишь с бурным развитием таких энергоемких автономных потребителей, как авиация и космонавтика, военная техника и наземный транспорт, ситуация изменилась.

Начались разработки оптимальных композиций анод - электролит с высокими энергетическими характеристиками при низких скоростях коррозии, подбирались недорогие воздушные катоды с максимальной электрохимической активностью и большим сроком службы, рассчитывались оптимальные режимы как для длительной эксплуатации, так и для короткого времени работы.

Разрабатывались и схемы энергетических установок, содержащие, кроме собственно источников тока, и ряд вспомогательных систем - подачи воздуха, воды, циркуляции электролита и его очистки, терморегулирования и пр. Каждая из них сама по себе достаточно сложна, и для нормального функционирова ния энергоустановки в целом потребовалась микропроцессорная система управления, которая задает алгоритмы работы и взаимодействия всем остальным системам. Пример построения одной из современных воздушно-алюминиевых установок представлен на рисунке (стр. 63.): на нем толстыми линиями обозначены потоки жидкостей (трубопроводы), а тонкими - информационные связи (сигналы датчиков и команд управления.

В последние годы Московским государственным авиационным институтом (техническим университе том) - МАИ совместно с научно-производственным комплексом источников тока "Альтернативная энергетика" - НПК ИТ "АльтЭН" создан целый функциональный ряд энергетических установок на основе воздушно-алюминиевых элементов. В том числе - экспериментальная установка 92ВА-240 для электромобиля. Ее энергоемкость и, как следствие, пробег электромобиля без подзарядки оказались в несколько раз выше, чем при использовании аккумуляторов - как традиционных (никель-кадмиевых), так и вновь разрабатываемых (серно-натриевых). Некоторые удельные характеристики электромобиля на этой энергоустановке приведены на прилегающей цветной вкладке в сравнении с характеристиками автомобиля и электромобиля на аккумуляторах. Сравнение это, однако, требует пояснений. Дело в том, что для автомобиля учтена лишь масса топлива (бензина), а для обоих электромобилей - масса источников тока в целом. В связи с этим необходимо заметить, что электродвигатель имеет значительно меньший вес, чем бензиновый, не требует трансмиссии и в несколько раз экономнее расходует энергию. Если учесть все это, то окажется, что реальный выигрыш нынешнего автомобиля будет в 2-3 раза меньшим, но все же пока достаточно большим.

Есть у установки 92ВА-240 и другие - чисто эксплуатационные - преимущества. Перезарядка воздушно-алюминиевых батарей вообще не требует электросети, а сводится к механической замене отработанных алюминиевых анодов новыми, на что уходит не более 15 минут. Еще проще и быстрей происходит замена электролита для удаления из него осадка гидроксида алюминия. На "заправочной" станции отработанный электролит подвергают регенерации и используют для повторной заправки электромоби лей, а отделенный от него гидроксид алюминия направляют на переработку.

Помимо электромобильной энергоустановки на воздушно-алюминиевых элементах теми же специалистами создан целый ряд малых энергоустановок (см. "Наука и жизнь" № 3, 1997 г.). Каждую из этих установок можно механически перезаряжать не менее 100 раз, и число это определяется в основном ресурсом работы пористого воздушного катода. А срок хранения этих установок в незаправленном состоянии вообще не ограничен, поскольку потерь емкости при хранении нет - саморазряд отсутствует.

В небольших по мощности воздушно-алюминиевых источниках тока можно использовать для приготовления электролита не только щелочь, но и обычную поваренную соль: процессы в обоих электроли тах протекают аналогично. Правда, энергоемкость солевых источников в 1,5 раза меньше, чем щелочных, но зато пользователю они причиняют гораздо меньше хлопот. Электролит в них получается совершенно безопасным, и работу с ним можно доверить даже ребенку.

Воздушно-алюминиевые источники тока для питания маломощной бытовой техники выпускаются уже серийно, и цена их вполне доступна. Что же касается автомобильной энергоустановки 92ВА-240, то она пока существует только в опытных партиях. Один ее экспериментальный образец номинальной мощностью 6 кВт (при напряжении 110 В) и емкостью 240 ампер-часов стоит около 120 тысяч рублей в ценах 1998 года. По предварительным расчетам, эта стоимость после разворачивания серийного производства снизится по крайней мере до 90 тысяч рублей, что позволит выпускать электромобиль ценою не намного большей, чем автомобиль с двигателем внутреннего сгорания. Что же касается стоимости эксплуатации электромобиля, то она и теперь вполне сопоставима со стоимостью эксплуатации автомобиля.

Дело остается за малым - произвести более глубокую оценку и расширенные испытания, а затем при положительных результатах начинать опытную эксплуатацию.


Владельцы патента RU 2561566:

Изобретение относится к источникам энергии, в частности к воздушно-алюминиевым источникам тока.

Известен химический источник тока (Пат. RU 2127932), в котором замена алюминиевого электрода осуществляется также путем вскрытия корпуса батареи с последующей установкой нового электрода.

Недостатком известных способов ввода электрода в батарею является то, что на период замены электрода батарею необходимо выводить из цепи энергообеспечения.

Известна топливная батарея (заявка RU 2011127181), в котором расходуемые электроды в виде лент протягиваются сквозь корпус батареи через гермовводы и гермовыводы по мере их выработки при помощи протяжных барабанов, что обеспечивает ввод расходуемых электродов в батарею без прерывания цепи энергообеспечения.

Недостатком известного способа является то, что гермовводы и гермовыводы не выводят из батареи выделившийся во время работы водород.

Технический результат изобретения - обеспечение автоматического ввода электрода с увеличенной рабочей площадью расходуемого электрода в топливном элементе без прерывания цепи энергообеспечения, повышение энергетических показателей работы топливного элемента.

Указанный технический результат достигается тем, что способ ввода расходуемого электрода в воздушно-алюминиевый топливный элемент, включает перемещение расходуемого электрода по мере его выработки внутрь корпуса топливного элемента. Согласно изобретению используют расходуемый электрод в виде алюминиевой проволоки, которую наматывают на винтовую канавку тонкостенного стержня из диэлектрического гидрофобного материала и один конец которой вводят внутрь полости тонкостенного

стержня через отверстие в его нижней части, а перемещение расходуемого электрода осуществляют путем ввинчивания тонкостенного стержня в крышки корпуса топливного элемента, расположенные с двух сторон корпуса и изготовленные из гидрофобного материала, с обеспечением сохранения электролита внутри топливного элемента и удаления из его корпуса выделяющегося водорода по винтовой поверхности гидрофобных крышек.

Перемещение расходуемого электрода, намотанного на тонкостенный стержень с винтовой канавкой, происходит в результате ввинчивания его в крышки, которые изготовлены из гидрофобного материала (фторопласт, пс, лиэтилен), при этом электролит остается внутри топливного элемента, а выделившийся во время работы водород удаляется по винтовой поверхности из корпуса топливного элемента.

Цилиндрическая образующая для расходуемого электрода выполнена в виде тонкостенного стержня с винтовой канавкой, на которую намотан электрод из алюминиевой проволоки. Стержень выполнен из диэлектрического гидрофобного материала, позволяющий не взаимодействовать с электролитом. Стержень с электродом из алюминиевой проволоки увеличивает активную площадь расходуемого электрода и таким образом повышает энергетические характеристики (величину снимаемого тока) воздушно-алюминиевого топливного элемента.

Сущность изобретения поясняется рисунками, где:

на фиг. 1 изображен воздушно-алюминиевый источник тока;

на фиг. 2 - вид А на фиг. 1;

на фиг. 3 - вид В на фиг. 1.

Воздушно-алюминиевый топливный элемент стоит из металлического корпуса 1 с отверстиями 2 для прохождения воздуха к трехфазной границе, газодиффузионного катода 3, электролита 4, 2-х гидрофобных крышек 5, расположенных с двух сторон металлического корпуса 1, электрода в виде тонкостенного стержня 6, алюминиевой проволоки 7, намотанной на винтовую канавку.

По мере расходования алюминиевой проволоки 7, происходит коррозия и пассивация поверхности электрода, которая приводит к уменьшению величины снимаемого тока и затуханию электрохимического процесса. Для активизации процесса необходимо ввинчивать тонкостенный стержень, с винтовой канавкой, в которой намотан расходуемый алюминиевый провод, в гидрофобные крышки 5. Выделение водорода происходит через винтовые поверхности гидрофобных крышек 5, при этом электролит остается внутри металлического корпуса 1 топливного элемента.

Данный способ позволяет автоматизировать процесс замены анода (расходуемый электрод) в воздушно-алюминиевом источнике тока (ВАИТ) без прерывания цепи энергообеспечения, а также удаление выделившегося во время работы водорода.

Способ ввода расходуемого электрода в воздушно-алюминиевый топливный элемент, включающий перемещение расходуемого электрода по мере его выработки внутрь корпуса топливного элемента, отличающийся тем, что используют расходуемый электрод в виде алюминиевой проволоки, которую наматывают на винтовую канавку тонкостенного стержня из диэлектрического гидрофобного материала и один конец которой вводят внутрь полости тонкостенного стержня через отверстие в его нижней части, а перемещение расходуемого электрода осуществляют путем ввинчивания тонкостенного стержня в крышки корпуса топливного элемента, расположенные с двух сторон корпуса и изготовленные из гидрофобного материала, с обеспечением сохранения электролита внутри топливного элемента и удаления из его корпуса выделяющегося водорода по винтовой поверхности гидрофобных крышек.

Похожие патенты:

Настоящее изобретение относится к электрогенератору на топливных элементах, специально спроектированному как резервное устройство при отсутствии сетевого электроснабжения.

Настоящее изобретение относится к газогенератору для конверсии топлива в обедненный кислородом газ и/или обогащенный водородом газ, который может быть использован в любом процессе, требующем обедненного кислородом газа и/или обогащенного водородом газа, предпочтительно, используют его для генерирования защитного газа или восстановительного газа для запуска, выключения или аварийного отключения твердооксидного топливного элемента (SOFC) или твердооксидного элемента электролиза (SOEC).

Изобретение относится к технологии топливных элементов, а более конкретно к сборному модулю из батарей твердооксидных топливных элементов. Технический результат - обеспечение компактности, простота перехода батарея/система и улучшение характеристик системы.

Изобретение относится к энергоустановкам c твердополимерными топливными элементами (ТЭ), в которых получают электроэнергию за счет электрохимической реакции газообразного водорода с двуокисью углерода, и электрохимической реакции окиси углерода с кислородом воздуха.

Предложена система (100) топливного элемента, включающая в себя топливный элемент (1) для генерирования энергии путем осуществления электрохимической реакции между газом-окислителем, подаваемым на электрод (34) окислителя, и топливным газом, подаваемым на топливный электрод (67); систему (HS) подачи топливного газа для подачи топливного газа на топливный электрод (67); и контроллер (40) для регулирования системы (HS) подачи топливного газа, чтобы подавать топливный газ на топливный электрод (67), причем контроллер (40) осуществляет изменение давления, когда выход стороны топливного электрода (67) закрыт, при этом контроллер (40) периодически изменяет давление топливного газа у топливного электрода (67) на основе первого профиля изменения давления для осуществления изменения давления при первом размахе давления (ДР1).

Изобретение относится к способу изготовления металлического стального сепаратора для топливных элементов, который обладает коррозионной стойкостью и контактным сопротивлением не только в начальной стадии, но также и после влияния условий высокой температуры и/или высокой влажности в топливном элементе в течение длительного периода времени.

Изобретение относится к твердотельным оксидным топливным элементам со способностью к внутреннему риформингу. Твердотельный оксидный топливный элемент обычно включает катод, электролит, анод и слой катализатора, находящийся в соприкосновении с анодом.

Настоящее изобретение относится к керамической мембране, проводящей щелочные катионы, по меньшей мере, часть поверхности которой покрыта слоем из органического катионо-проводящего полиэлектролита, который нерастворим и химически устойчив в воде при основном рН.

Изобретение относится к химическим источникам тока с газодиффузионным воздушным катодом, металлическим анодом и водными растворами электролитов. Металло-воздушный источник тока содержит корпус, заполненный электролитом, размещенный внутри него металлический анод, газодиффузионные воздушные катоды, расположенные по обе стороны металлического анода. При этом газодиффузионные воздушные катоды имеют центральные поперечные изгибы и отделены от металлического анода проницаемыми для электролита пористыми сепараторами, изготовленными из материала с высоким омическим сопротивлением. Металлический анод имеет форму прямоугольного параллелепипеда, сопряженного с клином, и опирается клином на упомянутые пористые сепараторы. Предложенный металло-воздушный источник тока обладает повышенной удельной емкостью, стабильными характеристиками и увеличенным ресурсом работы, поскольку позволяет увеличить отношение массы растворяющейся части металлического анода к объему электролита, а следовательно, удельную энергоемкость и время работы источника тока без замены металлического анода. 10 ил., 2 пр.

Изобретение относится к источникам энергии, а именно к способам замены расходуемого электрода в воздушно-алюминиевом топливном элементе без прерывания цепи энергообеспечения. Используют расходуемый электрод в виде алюминиевой проволоки, которую наматывают на винтовую канавку тонкостенного стержня из диэлектрического гидрофобного материала. Один конец проволоки вводят внутрь полости тонкостенного стержня через отверстие в его нижней части. Перемещение расходуемого электрода осуществляют путем ввинчивания тонкостенного стержня в крышки корпуса топливного элемента, расположенные с двух сторон корпуса и изготовленные из гидрофобного материала, с обеспечением сохранения электролита внутри топливного элемента и удаления из его корпуса выделяющегося водорода по винтовой поверхности гидрофобных крышек. Обеспечивается повышение энергетических показателей работы топливного элемента. 3 ил.

Использование: воздушно-металлические батареи в качестве автономного малогабаритного перезаряжаемого источника тока. Сущность изобретения: воздушно-металлический гальванический элемент коробчатого типа, включающий электролитную емкость с заправочным отверстием в ее верхней части, крышку, расходуемый металлический анод плоской формы, помещенный в электролитную емкость, газодиффузионный катод, расположенный на некотором расстоянии от рабочей поверхности анода и свободно омываемый снаружи газом, например воздухом, газосборную камеру. В верхней части электролитной емкости вокруг заправочного отверстия имеется непрерывный конический выступ, выполняющий роль лабиринтного уплотнения, в средней части боковых стенок электролитной емкости и в ее нижней части выполнено по два ограничительных выступа, в нижней части электролитной емкости V образована камера для сбора шлама V шл с соотношением объемов V: V шл = 5-15, толщина анода в пределах 1-3 мм и составляет 0,05-0,50 от величины межкатодного зазора, объем электролитной емкости определяется выражениями: V = V эл + V ан; V эл =q эл QnK 1 ; V ан =q эх +q кор QnK 2 , V ан - объем анода, см 3 ;
n - количество циклов;
K 2 = (1,97-1,49) -конструктивный коэффициент,
а соотношение длины а, ширины b и высоты с составляет: 1: 0,38: 2,7; 1: 0,35: 3,1; 1: 0,33: 3,9. Воздушно-металлическая батарея содержит корпус, крышку с коммутацией, по крайней мере один воздушно-металлический гальванический элемент предлагаемой конструкции. Способ эксплуатации воздушно-металлического гальванического элемента и батареи на его основе включает разряд, замену анодов и электролита свежими, промывку элементов. Аноды перед использованием предварительно обрабатывают в водном растворе гидроокиси натрия концентрацией (2-5) моль/л с добавкой трехводного натрий метастанната концентрацией (0,01-0,10) моль/л. 3 с.п. ф-лы, 5 ил., 2 табл.

Изобретение относится к электрохимии, касается способа эксплуатации воздушно-металлических батарей и может быть использовано при применении воздушно-металлических батарей в качестве автономного малогабаритного перезаряжаемого источника тока. Известен гальванический элемент, например, воздушно-металлического типа. Элемент в основном содержит электролитную емкость, крышку, расходуемый металлический электрод плоской формы, помещенный в электролитную емкость. На некотором расстоянии от рабочей поверхности электрода расположен газодиффузионный катод, который снаружи свободно омывается газом, в частности воздухом. Для улучшения циркуляции электролита и тем самым повышения эффективности электрохимического преобразования энергии водород, образующийся в процессе электрохимической реакции, накапливается в электролитной емкости и повышающееся при этом давление используется для перемещения электролита. При этом электролитная емкость содержит газосборную камеру, газовое давление в которой может воздействовать на электролит. Через систему трубок вытесняемый электролит переходит из верхней части электролитной емкости в нижнюю (Европатент N 0071015 А2 от 22.06.82 - прототип). Недостатком известного гальванического элемента воздушно-металлического типа являются низкие удельные электроэнергетические характеристики из-за избыточного веса, вызванного усложнением конструкции. Известна первичная воздушно-металлическая батарея, содержащая корпус, крышку с коммутацией, по крайней мере один воздушно-металлический гальванический элемент (патент США N 4626482, H 01 M 12/6, 1986 - прототип). Недостатком известной первичной воздушно-металлической батареи являются низкие удельные электроэнергетические характеристики. Известен способ эксплуатации воздушно-металлического гальванического элемента и батареи на его основе путем разряда, замены анодов и электролита свежими, промывки элемента (а.с. СССР, 621041, H 01 M 10/42, H 01 M 12/08). Недостатком известного способа является длительный период выхода батареи на заданный режим (10-20) мин. Целью изобретения является повышение удельных электроэнергетических характеристик воздушно-металлических элементов и батарей на их основе, повышение стабильности характеристик во времени, а также уменьшение времени выхода на режим до (1-3) мин. Поставленная цель достигается тем, что в известном воздушно-металлическом гальваническом элементе коробчатого типа, включающем электролитную емкость с заправочным отверстием в верхней ее части, крышку, расходуемый металлический анод плоской формы, помещенный в электролитную емкость, газодиффузионный катод, расположенный на некотором расстоянии от рабочей поверхности анода и свободно омываемый снаружи газом, например воздухом, газосборную камеру, в верхней части вокруг заправочного отверстия имеется непрерывный конический выступ, выполняющий роль лабиринтного уплотнения, в средней части боковых стенок электролитной емкости и в ее нижней части выполнено по два ограничительных выступа, в нижней части электролитной емкости (V) образована камера для сбора шлама (V шл) с соотношением объемов V: V шл = 5 - 15, толщина анода в пределах (1-3) мм составляет 0,05-0,50 от величины межкатодного зазора, объем электролитной емкости определяется выражением:
V = V эл + V ан;
V эл = q эл Qnk 1 ;
V ан (q эх + q кор)Qnk 2 ;
где V - объем электролитной емкости, см 3 ;
V эл - объем электролита, см 3 ;
V ан - объем анода, см 3 ;
q эл - удельный расход воды из электролита, см 3 /Ач;
q эх - удельный расход алюминия на электрохимическую реакцию, см 3 /Ач;
Q - емкость элемента за один цикл, Ач;
n - количество циклов;
k 1 = (0,44-1,45) - конструктивный коэффициент;

a:b:c = 1:0,38:2,7;
a:b:c = 1:0,35:3,1;
a:b:c = 1:0,33:3,9. В известной первичной воздушно-металлической батарее, содержащей корпус, крышку с коммутацией, один или несколько воздушно-металлических гальванических элементов, в качестве такого элемента применен предлагаемый элемент; в известном способе эксплуатации воздушно-металлического элемента и батареи на его основе путем разряда, замены анодов и электролита свежими, промывки элемента аноды предварительно обрабатывают в водном растворе гидроокиси натрия концентрацией (2-5) моль/л с добавкой трехводного натрий метастанната концентрацией (0,01-0,10) моль/л. Общим признаком является наличие в воздушно-металлическом гальваническом элементе коробчатого типа электролитной емкости с заправочным отверстием в верхней ее части, крышки, расходуемого металлического анода плоской формы, помещенного в электролитную емкость, газодиффузионного катода, расположенного на некотором расстоянии от рабочей поверхности анода и свободно омываемого снаружи газом, например воздухом, газосборной камеры, наличие в батарее корпуса, крышки с коммутацией, одного или нескольких элементов, эксплуатация батареи путем разряда, замены анодов и электролита свежими, промывки элемента. Отличительным признаком является то, что в верхней части электролитной емкости вокруг заправочного отверстия имеется непрерывный конический выступ, выполняющий роль лабиринтного уплотнения, в средней части боковых стенок электролитной емкости и в ее нижней части выполнено по два ограничительных выступа, в нижней части электролитной емкости (V) образована камера для сбора шлама (V шл) с соотношением объемов V: V шл = 5 - 15, толщина анода в пределах (1 - 3) мм составляет 0,05-0,50 от величины межкатодного зазора, объем электролитной камеры определяется выражением:
V = V эл + V ан;
V эл = q эл Qnk 1 ;
V ан =(q эх +q кор)Qnk 2 ;
где V - объем электролитной емкости, см 3 ;
V эл - объем электролита, см 3 ;
V ан - объем анода, см 3 ;
q эл - удельный расход воды из электролита, см 3 /Ач;
q эх - удельный расход алюминия на электрохимическую реакцию, см 3 /Ач;
q кор - удельный расход алюминия на коррозию, см 3 /Ач;
Q - емкость элемента за один цикл, Ач;
n - количество циклов;
k 1 = (0,44-1,45) - конструктивный коэффициент;
k 2 = (1,97-1,49) - конструктивный коэффициент;
а соотношение длины (a), ширины (b) и высоты (c) составляет:
a:b:c = 1:0,38:2,7;
a:b:c = 1:0,35:3,1;
a:b:c = 1:0,33:3,9. В батарее в качестве воздушно-металлического гальванического элемента применен предлагаемый элемент; при эксплуатации воздушно-металлического гальванического элемента и батареи на его основе аноды предварительно обрабатывают в водном растворе гидроокиси натрия концентрацией (2-5) моль/л с добавкой трехводного натрий метастанната концентрацией (0,01-0,10) моль/л. Заявляемая совокупность и взаимосвязь отличительных признаков в известных источниках патентной и научно-технической литературы не обнаружены. Таким образом, предлагаемое техническое решение обладает новизной и изобретательским уровнем. Изобретение является промышленно применимым, т.к. может быть использовано в качестве экологически чистого автономного источника тока в составе следующих систем:
- портативный переносной магнитофон типа "плеер" с функциями записи и воспроизведения через внешнюю акустическую систему;
- портативный телевизионный приемник на жидких кристаллах;
- портативный электрофонарь;
- электровентилятор;
- детские видеоигры на жидких кристаллах;
- детские радиоуправляемые электромобили;
- портативный радиоприемник;
- зарядное устройство для аккумуляторов;
- переносной измерительный прибор. Предлагаемый источник тока обеспечивает высокие удельные электроэнергетические характеристики, сохраняя их стабильными в течение всего своего ресурса, а также позволяет снизить время выхода на расчетный режим с 10 - 20 до 1-3 мин. Состояние показателей позволяет сделать вывод о целесообразности использования полученных геометрических соотношений в проектировании воздушно-алюминиевых батарей. Изобретение поясняется чертежом, где на фиг. 1 показан воздушно-алюминиевый элемент - вид N 1, на фиг. 2 - воздушно-алюминиевый элемент - вид N 2, на фиг. 3 - воздушно-алюминиевый элемент - вид N 3. На фиг. 4 изображена электролитная емкость воздушно-алюминиевого элемента, а на фиг. 5 - батарея на основе воздушно-алюминиевых элементов. Воздушно-алюминиевый гальванический элемент состоит из электролитной емкости 1, которая имеет по внешним боковым стенкам 2 окна 3, в верхней части 4 заправочное отверстие 5, окруженное непрерывным коническим выступом 6, выполняющим роль лабиринтного уплотнения, с внутренней стороны электролитной емкости 1 на средней части боковых стенок 2 и в ее нижней части выполнены два ограничительных выступа 7, в нижней части электролитной емкости 1 образована камера 8 для сбора шлама, который нарабатывается в процессе эксплуатации. В электролитную емкость 1 герметично вставлены газодиффузионные катоды 9 в окна 3 рамки 10. Герметичность электролитной емкости 1 достигается при помощи нейтрального по отношению к водному раствору электролита герметика. Электрическая связь катодов 9 с потребителем при использовании воздушно-алюминиевого элемента как вне батареи, а также в составе ее осуществляется с помощью катодного токосъемника 11, охватывающего электролитную емкость 1 двумя горизонтальными поджимами 12, которые электрически связаны с двумя вертикальными поджимами 13. В электролитную емкость 1 через заправочное отверстие 5 вставляется плоский металлический анод 14 с выступом 15 прямоугольной формы, предназначенным для осуществления токосъема. Плоскость выступа 15 служит также для уплотнения по линии "анод 14 - крышка 16". Заправочное отверстие 5 закрывается и уплотняется крышкой 16, содержащей одно отверстие 17 для пропускания через него анода 14 и одно или несколько отверстий 18 для отвода водорода из электролитной емкости 1 в процессе работы воздушно-алюминиевого элемента через крышку 16, являющуюся одновременно гидрофобной мембраной. Наличие в верхней части электролитной емкости 4 по периметру вокруг заправочного отверстия 5 выступа конической формы 6 позволяет усилить уплотнительные свойства крышки 16. Геометрические соотношения конструкции, позволяющие улучшить удельные электроэнергетические параметры следующие:
Н1/(Н2+Н3+Н4) = 1,05-1,20
Н3/Н2=Н3/Н4= 5-15
Н5/Н1= 1,1-1,5
Н6/Н3=1-1,1
L2/LI = 1-1,1
L3/LI= 1,1-1,5
L5/L6= 0,05-0,50
2xL4/L6= 0,95-0,75
Батарея на основе воздушно-алюминиевых элементов состоит из корпуса 19 с внутренними вертикальными пазами 20 для удержания воздушно-алюминиевых элементов и окон 21 для организации внешнего свободного притока воздуха внутрь батареи, замков 22 для крепления крышки с коммутацией 23 к корпусу 19, одной или нескольких электролитных емкостей 1 с установленными катодными токосъемниками 11, с вставленными в них анодами 14 и надетыми поверх крышками 16, токоразводящей двухсторонней платы 24, содержащей на стороне, повернутой к воздушно-алюминиевым элементам, токопроводящие дорожки 25 для осуществления электрической связи от катодов 9 к электролитным емкостям 1 через катодные токосъемники 11 к токоразводящей двухсторонней плате 24, несколько отверстий 26 прямоугольной формы для пропускания выступа 15 металлического анода 14 с целью осуществления электрической связи между металлическим анодом 14 и анодным токосъемником 27, несколько отверстий произвольной формы 28 для дренажа водорода из электролитной емкости 1 в атмосферу через крышку 23, несколько разъемов 29, расположенных на верхней стороне токоразводящей двухсторонней платы 24, перемыкаемых электропроводящей перемычкой 30 для выбора потребителем рабочего напряжения и связи с электропроводящими дорожками 25 и 31 с обеих сторон, несколько разъемов 32, расположенных на верхней стороне токоразводящей двухсторонней платы 24, служащих для подключения потребителя, а также крышки 23, закрывающей батарею сверху и содержащей несколько отверстий 33 под разъемы 32, несколько отверстий 34 под разъемы 29, одно или несколько отверстий 35 под дренаж водорода, два продольных паза 36 под замки 22, этикетку 37 с краткой инструкцией по эксплуатации. Принцип действия и способ эксплуатации воздушно-металлического гальванического элемента и батареи на его основе, например батарея 3 ВА-24, заключаются в следующем. Электрическая энергия в батарее генерируется при осуществлении электрохимической реакции окисления алюминия на аноде и восстановления кислорода на катоде. В качестве электролита используют водные растворы или едкого натрия (NaOH), или хлористого натрия (NaCI), или смеси указанных растворов с ингибирующими добавками: Na 2 SnO 3 3Н 2 О - в щелочном электролите и NaHCO 3 - в солевом. В процессе реакции наряду с расходом алюминия идет потребление кислорода из воздуха и воды из электролита, поэтому при эксплуатации батареи по мере их расходования в процессе разряда периодически проводят замену анода и электролита на свежие. Продуктами реакции являются гидроокись алюминия Al(OH) 3 и тепло. Батарея работает в диапазоне температур от -10 o C до +60 o C без дополнительного подогрева при запуске от минусовых температур. Одним из отрицательных факторов воздушно-алюминиевой батареи является коррозия анода. Это приводит к снижению электрических характеристик батареи и выделению небольшого количества водорода. В большей степени влияние коррозии проявляется на пусковых характеристиках, вследствие чего время выхода на заданный режим составляет (10-20) мин. Предлагаемая обработка анодов, при которой их поверхность покрывается оловом, позволяет снизить плотность тока коррозии и значительно улучшить режим эксплуатации воздушно-алюминиевой батареи, в результате чего повышаются электрические характеристики и время выхода на режим снижается до (1-3) мин. Нанесение покрытия на анод проводят перед началом включения батареи в работу. Предварительно анод обезжиривают, а затем обрабатывают в водном растворе гидроокиси натрия концентрацией (2-5) моль/л с добавкой трехводного натрий метастанната концентрацией (0,01- 0,10) моль/л при комнатной температуре в течение 5-60 мин. Результаты испытаний предлагаемой воздушно-алюминиевой батареи и прототипа представлены в табл. 1 и 2. Как видно из таблиц, предлагаемая воздушно-алюминиевая батарея обеспечивает высокие удельные и стабильные во времени электроэнергетические характеристики при малом времени выхода на режим.

Формула изобретения

1. Воздушно-металлический гальванический элемент коробчатого типа, включающий электролитную емкость с заправочным отверстием в ее верхней части, расходуемый металлический анод плоской формы, помещенный в электролитную емкость, газодиффузионный катод, расположенный на некотором расстоянии от рабочей поверхности анода и свободно омываемый снаружи газом, например воздухом, газосборную камеру, отличающийся тем, что в верхней части электролитной емкости вокруг заправочного отверстия имеется непрерывный конический выступ, выполняющий роль лабиринтного уплотнения, в средней части боковых стенок электролитной емкости и в ее нижней части выполнено по два ограничительных выступа, в нижней части электролитной емкости V образована камера V шл для сбора шлама с соотношением объемов V: V шл = 5 - 15, толщина анода в пределах 1 - 3 мм составляет 0,05 - 0,50 от величины межкатодного зазора, объем электролитной емкости определяется выражением:
V = V эл + V ан;
V эл = q эл Q n k 1 ;
V ан = (q эх + q кор) Q n k 2 ;
где V - объем электролитной емкости, см 3 ;
V эл - объем электролита, см 3 ;
V ан - объем анода, см 3 ;
q эл - удельный расход воды из электролита, см 3 /Ач;
q эх - удельный расход алюминия на электрохимическую реакцию см 3 /Ач;
q кор - удельный расход алюминия на коррозию, см 3 /А ч;
Q - емкость элемента за один цикл, Ач;
n - количество циклов;
K 1 = (0,44 - 1,45) - конструктивный коэффициент;
K 2 = (1,97 - 1,49) - конструктивный коэффициент;
а соотношение длины а, ширины b и высоты с составляет 1: 0,38: 2,7; 1: 0,35: 3,1; 1: 0,33: 3,9. 2. Первичная воздушно-металлическая батарея, содержащая корпус, крышку, по крайней мере один воздушно-металлический гальванический элемент, отличающаяся тем, что в качестве такого элемента взят элемент по п.1. 3. Способ эксплуатации воздушно-металлического гальванического элемента и батареи на его основе путем разряда, замены анодов и электролита свежими, промывка элемента, отличающийся тем, что аноды предварительно обрабатывают в водном растворе гидроокиси натрия концентрацией (2 - 5) моль/л с добавкой трехводного натрий метастанната с концентрацией (0,01 - 0,10) моль/л.

Химические источники тока со стабильными и высокими удельными характеристиками - одно из важнейших условий развития средств связи.

В настоящее время потребность пользователей электроэнергии для средств связи покрывается, в основном, за счет применения дорогостоящих гальванических элементов или аккумуляторов.

Аккумуляторы являются относительно автономными источниками электропитания, поскольку нуждаются в периодическом заряде от сети. Зарядные устройства, применяемые для этой цели, имеют высокую стоимость и не всегда способны обеспечить благоприятный режим заряда. Так, аккумулятор Sonnenschein, изготовленный по технологии dryfit и имеющий массу 0,7 кг, а емкость 5 А·ч, заряжается в течение 10 часов, причем при заряде необходимо соблюдать нормативные значения тока, напряжения и времени заряда. Заряд проводится сначала при постоянном токе, затем при постоянном напряжении. Для этого применяются дорогостоящие зарядные устройства с программным управлением.

Абсолютно автономными являются гальванические элементы, но они, как правило, имеют низкую мощность и ограниченную емкость. По исчерпании заложенной в них энергии они утилизируются, загрязняя окружающую среду. Альтернативой сухим источникам являются воздушно-металлические механически перезаряжаемые источники, некоторые энергетические характеристики которых приведены в таблице 1.

Таблица 1 - Параметры некоторых электрохимических систем

Электро-химическая система

Теоретические параметры

Практически реализуемые параметры

Удельная энергия, Вт·ч/кг

Напряжение, В

Удельная энергия, Вт·ч/кг

Воздушно-алюминиевая

Воздушно-магниевая

Воздушно-цинковая

Никель-металлгидридная

Никель-кадмиевая

Марганцево-цинковая

Марганцево-литиевая

Как видно из таблицы, воздушно-металлические источники, в сравнении с другими широко применяемыми системами, обладают наибольшими теоретическими и практически реализуемыми энергетическими параметрами.

Воздушно-металлические системы были реализованы значительно позже, а их разработка до сих пор ведется менее интенсивно, чем источников тока других электрохимических систем. Однако испытания опытных образцов, созданных отечественными и иностранными фирмами, показали их достаточную конкурентоспособность.

Показано, что сплавы алюминия и цинк могут работать в щелочных и солевых электролитах. Магний - лишь в солевых электролитах, причем его интенсивное растворение идет как при генерировании тока, так и в паузах.

В отличие от магния алюминий в солевых электролитах растворяется лишь при генерировании тока. Для цинкового электрода наиболее перспективны щелочные электролиты.

Воздушно-алюминиевые источники тока (ВАИТ)

На основе алюминиевых сплавов созданы механически перезаряжаемые источники тока с электролитом на основе поваренной соли. Эти источники абсолютно автономны и могут использоваться для электропитания не только средств связи, но и для заряда аккумуляторов, питания различной бытовой аппаратуры: радиоприемников, телевизоров, кофемолок, электродрелей, светильников, электрофенов, паяльников, маломощных холодильников, центробежных насосов и пр. Абсолютная автономность источника позволяет использовать его в полевых условиях, в регионах, не имеющих централизованного электроснабжения, в местах катастроф и стихийных бедствий.

Заряд ВАИТ производится в течение считанных минут, которые необходимы для заливки электролита и/или замены алюминиевых электродов. Для заряда нужна лишь поваренная соль, вода и запас алюминиевых анодов. В качестве одного из активных материалов используется кислород воздуха, который восстанавливается на катодах из углерода и фторопласта. Катоды достаточно дешевы, обеспечивают работу источника в течение длительного времени и, поэтому оказывают незначительное влияние на стоимость генерируемой энергии.

Стоимость электроэнергии, получаемой в ВАИТ, определяется, в основном, лишь стоимостью периодически заменяемых анодов, в нее не включается стоимость окислителя, материалов и технологических процессов, обеспечивающих работоспособность традиционных гальванических элементов и, поэтому, она в 20 раз ниже стоимости энергии, получаемой от таких автономных источников как щелочные марганцево-цинковые элементы.

Таблица 2 - Параметры воздушно-алюминиевых источников тока

Тип батареи

Марка батареи

Число элементов

Масса электролита, кг

Емкость по запасу электролита, А·ч

Масса комплекта анодов, кг

Емкость по запасу анодов, А·ч

Масса батареи, кг

Погружаемые

Заливаемые

Длительность непрерывной работы определяется величиной потребляемого тока, объемом залитого в элемент электролита и составляет 70 - 100 А·ч/л. Нижний предел определяется вязкостью электролита, при которой возможен его свободный слив. Верхний предел соответствует снижению характеристик элемента на 10-15%, однако по его достижении для удаления электролитной массы необходимо применение механических устройств, которые могут повредить кислородный (воздушный) электрод.

Вязкость электролита возрастает по мере его насыщения взвесью гидроксида алюминия. (Гидроксид алюминия встречается в природе в виде глины или глинозема, является прекрасным продуктом для производства алюминия и может быть возвращен в производство).

Замена электролита осуществляется в считанные минуты. С новыми порциями электролита ВАИТ может работать до исчерпания ресурса анода, который при толщине 3 мм составляет 2,5 А·ч/см 2 геометрической поверхности. Если аноды растворились, их в течение нескольких минут заменяют новыми.

Саморазряд ВАИТ очень мал, даже при хранении с электролитом. Но в силу того, что ВАИТ в перерыве между разрядами может храниться без электролита - его саморазряд ничтожен. Ресурс работы ВАИТ ограничен сроком службы пластмассы, из которой он изготовлен ВАИТ без электролита может храниться до 15 лет.

В зависимости от требований потребителя ВАИТ может быть модифицирован с учетом того, что 1 элемент имеет напряжение 1 В при плотности тока 20 мА/см 2 , а ток снимаемый с ВАИТ определяется площадью электродов.

Проведенные в МЭИ(ТУ) исследования процессов, протекающих на электродах и в электролите, позволили создать два типа воздушно-алюминиевых источников тока - заливаемые и погружаемые (табл. 2).

Заливаемые ВАИТ

Заливаемые ВАИТ состоят из 4-6 элементов. Элемент заливаемого ВАИТ (рис. 1) представляет собой прямоугольную емкость (1), в противоположных стенках которой установлен катод (2). Катод состоит из двух частей, электрически соединенных в один электрод шиной (3). Между катодами располагается анод (4), положение которого фиксируется направляющими (5). Конструкция элемента, запатентованного авторами /1/, позволяет уменьшить отрицательное влияние образующегося в качестве конечного продукта гидроксида алюминия, за счет организации внутренней циркуляции. С этой целью элемент в плоскости, перпендикулярной плоскости электродов, разделен перегородками на три секции. Перегородки выполняют также роль направляющих анод полозков (5). В средней секции располагаются электроды. Выделяющиеся при работе анода пузырьки газа поднимают вместе с потоком электролита взвесь гидроксида, который опускается на дно в двух других секциях элемента.

Рисунок 1 - Схема элемента

Подвод воздуха к катодам в ВАИТ (рис. 2) осуществляется через зазоры (1) между элементами (2). Крайние катоды защищены от внешних механических воздействий боковыми панелями (3). Непроливаемость конструкции обеспечивается применением быстро снимаемой крышки (4) с уплотнительной прокладкой (5) из пористой резины. Натяг резиновой прокладки достигается прижатием крышки к корпусу ВАИТ и фиксацией ее в этом состоянии с помощью пружинных фиксаторов (на рисунке не показаны). Сброс газа осуществляется через специально разработанные пористые гидрофобные клапаны (6). Элементы (1) в батарее соединены последовательно. Пластинчатые аноды (9), конструкция которых разработана в МЭИ , имеют гибкие токосъемы с элементом разъема на конце. Разъем, ответная часть которого соединена с блоком катодов, позволяет быстро отсоединять и присоединять анод при его замене. При подсоединении всех анодов элементы ВАИТ соединяются последовательно. Крайние электроды соединены с борнами (10) ВАИТ также посредством разъемов.

1- воздушный зазор, 2 - элемент, 3 - защитная панель, 4 - крышка, 5 - катодная шина, 6 - прокладка, 7- клапан, 8 - катод, 9 - анод, 10 - борн

Рисунок 2 - Заливаемый ВАИТ

Погружаемый ВАИТ

Погружаемый ВАИТ (рис. 3) представляет собой вывернутый на изнанку заливаемый ВАИТ. Катоды (2) развернуты активным слоем наружу. Емкость элемента, в которую заливался электролит, делится на две перегородкой и служит для раздельной подачи воздуха к каждому катоду. В зазоре, через который подавался к катодам воздух, установлен анод (1). ВАИТ же активируется не заливкой электролита, а погружением в электролит. Электролит предварительно заливается и хранится в перерыве между разрядами в баке (6), который разделен на 6 не связанных между собой секций. В качестве бака используется моноблок аккумулятора 6СТ-60ТМ.

1 - анод, 4 - катодная камера, 2 - катод, 5 - верхняя панель, 3 - полозок, 6 - электролитный бак

Рисунок 3 - Погружаемый воздушно-алюминиевый элемент в панели модуля

Такая конструкция позволяет быстро разбирать батарею, удаляя модуль с электродами, и манипулировать при заливке и выгрузке электролита не с батареей, а с емкостью, масса которой с электролитом составляет 4,7 кг. Модуль объединяет 6 электрохимических элементов. Элементы крепятся на верхней панели (5) модуля. Масса модуля с комплектом анодов 2 кг. Последовательным соединением модулей набирались ВАИТ из 12, 18 и 24 элементов. К недостаткам воздушно-алюминиевого источника можно отнести довольно высокое внутреннее сопротивление, низкую удельную мощность, нестабильность напряжения во время разряда и провал напряжения при включении. Все указанные недостатки нивелируются при использовании комбинированного источника тока (КИТ), состоящего из ВАИТ и аккумулятора.

Комбинированные источники тока

Разрядная кривая "заливаемого" источника 6ВАИТ50 (рис. 4) при заряде герметизированного свинцового аккумулятора 2СГ10 емкостью 10 А·ч характеризуется, как и при питании других нагрузок, провалом напряжения в первые секунды при подключении нагрузки. В течение 10 -15 минут напряжение возрастает до рабочего, которое остается постоянным в течение всего разряда ВАИТ. Глубина провала определяется состоянием поверхности алюминиевого анода и его поляризацией.

Рисунок 4 - Разрядная кривая 6ВАИТ50 при заряде 2СГ10

Как известно, процесс заряда аккумулятора протекает только в том случае, когда напряжение на источнике, отдающем энергию, выше, чем на аккумуляторе. Провал же начального напряжения ВАИТ приводит к тому, что аккумулятор начинает разряжаться на ВАИТ и, следовательно, на электродах ВАИТ начинают протекать обратные процессы, которые могут привести к пассивации анодов.

Для предотвращения нежелательных процессов в цепь между ВАИТ и аккумулятором устанавливается диод. В этом случае разрядное напряжение ВАИТ при заряде аккумулятора определяется не только напряжением аккумулятора, но и падением напряжения на диоде:

U ВАИТ = U АКК + ΔU ДИОД (1)

Введение в цепь диода приводит к увеличению напряжения как на ВАИТ, так и на аккумуляторе. Влияние наличия диода в цепи иллюстрирует рис. 5, на котором представлено изменение разности напряжений ВАИТ и аккумулятора при заряде аккумулятора попеременно с диодом в цепи и без него.

В процессе заряда аккумулятора в отсутствии диода разность напряжений имеет тенденцию к уменьшению, т.е. снижению эффективности работы ВАИТ, в то время как в присутствии диода разность, а, следовательно, и эффективность процесса имеет тенденцию к возрастанию.

Рисунок 5 - Разность напряжений 6ВАИТ125 и 2СГ10 при заряде с диодом и без него

Рисунок 6 - Изменение токов разряда 6ВАИТ125 и 3НКГК11 при электропитании потребителя

Рисунок 7 - Изменение удельной энергии КИТ (ВАИТ - свинцовый аккумулятор) с увеличением доли пиковой нагрузки

Для средств связи характерно потребление энергии в режиме переменных, в том числе пиковых, нагрузок. Такой характер потребления был смоделирован нами при электропитании потребителя c базовой нагрузкой 0,75 А и пиковой 1,8 А от КИТ, состоящего из 6ВАИТ125 и 3НКГК11. Характер изменения токов генерируемых (потребляемых) составляющими КИТ, представлен на рис. 6.

Из рисунка видно, что в базовом режиме ВАИТ обеспечивает генерацию тока, достаточную для питания базовой нагрузки и заряда аккумулятора. В случае пиковой нагрузки потребление обеспечивается током, генерируемым ВАИТ и аккумулятором.

Проведенный нами теоретический анализ показал, что удельная энергия КИТ является компромиссной между удельной энергией ВАИТ и аккумулятора и возрастает с уменьшением доли пиковой энергии (рис. 7). Удельная мощность КИТ выше удельной мощности ВАИТ и возрастает с увеличением доли пиковой нагрузки.

Выводы

Созданы новые источники тока на основе электрохимической системы "воздух-алюминий" с раствором поваренной соли в качестве электролита, энергоемкостью около 250 А·ч и с удельной энергией свыше 300 Вт·ч/кг.

Заряд разработанных источников осуществляется в течение нескольких минут путем механической замены электролита и/или анодов. Саморазряд источников ничтожен и поэтому до активации они могут храниться в течение 15 лет. Разработаны варианты источников, отличающиеся способом активации.

Исследована работа воздушно-алюминиевых источников при заряде аккумулятора и в составе комбинированного источника. Показано, что удельная энергия и удельная мощность КИТ являются компромиссными величинами и зависят от доли пиковой нагрузки.

ВАИТ и КИТ на их основе абсолютно автономны и могут использоваться для электропитания не только средств связи, но и питания различной бытовой аппаратуры: электромашин, светильников, маломощных холодильников и пр. Абсолютная автономность источника позволяет использовать его в полевых условиях, в регионах, не имеющих централизованного электроснабжения, в местах катастроф и стихийных бедствий.

СПИСОК ЛИТЕРАТУРЫ

  1. Патент РФ № 2118014. Металло-воздушный элемент./ Дьячков Е.В., Клейменов Б.В., Коровин Н.В.,// МПК 6 Н 01 М 12/06. 2/38. прогр. 17.06.97 опубл. 20.08.98
  2. Korovin N.V., Kleimenov B.V., Voligova I.A. & Voligov I.A.// Abstr. Second Symp. on New Mater. for Fuel Cell and Modern Battery Systems. July 6-10. 1997. Montreal. Canada. v 97-7.
  3. Коровин Н.В., Клейменов Б.В. Вестник МЭИ (в печати).

Работа выполнена в рамках программы "Научные исследования высшей школы по приоритетным направлениям науки и техники"