1. Евтюков С. А., Васильев Я. В. Расследование и экспертиза дорожно-транспортных происшествий / под общ. ред. С. А. Евтюкова. СПб.: ООО «Издательство ДНК», 2004. 288 с
  2. Евтюков С. А., Васильев Я. В. Экспертиза дорожно-транспортных происшествий: справочник. СПб.: ООО «Издательство ДНК», 2006. 536 с
  3. Евтюков С. А., Васильев Я. В. ДТП: Расследование, реконструкция и экспертиза. СПб.: ООО «Издательство ДНК», 2008. 390 с
  4. ГОСТ Р 51709-2001. Автотранспортные средства. Требования безопасности к техническому состоянию и методы проверки. М.: Изд-во стандартов, 2001. 27 с
  5. Литвинов А. С., Фаробин Я. Е. Автомобиль: Теория эксплуатационных свойств. М.: Машиностроение, 1986. 240 с
  6. Судебная автотехническая экспертиза: пособие для экспертов-автотехников, следователей и судей. Ч. II. Теоретические основы и методика экспериментального исследования при производстве автотехнической экспертизы / под ред. В. А. Иларионова. М.: ВНИИСЭ, 1980. 492 с
  7. Пучкин В. А. и др. Оценка дорожной ситуации, предшествовавшей ДТП // Организация и безопасность дорожного движения в крупных городах: сб. докл. 8-й междунар. конф. СПб., 2008. C. 359-363
  8. Об утверждении устава Федерального бюджетного учреждения российского федерального Центра судебной экспертизы при Министерстве юстиции Российской Федерации: Приказ Министерства юстиции Российской Федерации от 03.03.2014 № 49 (в ред. от 21.01.2016 № 10)
  9. Надеждин Е. Н., Смирнова Е. Е. Эконометрика: учеб. пособие / под ред. Е. Н. Надеждина. Тула: АНО ВПО «ИЭУ», 2011. 176 с
  10. Григорян В. Г. Применение в экспертной практике параметров торможения автотранспортных средств: метод. рекомендации для экспертов. М.: ВНИИСЭ, 1995
  11. Постановление Правительства Российской Федерации от 06.10.1994 № 1133 «О судебно-экспертных учреждениях системы Министерства юстиции Российской Федерации»
  12. Постановление Правительства Российской Федерации о Федеральной целевой программе «Повышение безопасности дорожного движения в 2013-2020 годах» от 30.10.2012 № 1995-р
  13. Никифоров В. В. Логистика. Транспорт и склад в цепи поставок: учеб. пособие. М.: ГроссМедиа, 2008. 192 с
  14. Щукин М. М. Сцепные устройства автомобилей и тягачей: Конструкция, теория, расчет. М.; Л.: Машиностроение, 1961. 211 с
  15. Пучкин В. А. Основы экспертного анализа дорожно-транспортных происшествий: База данных. Экспертная техника. Методы решений. Ростов н/Д: ИПО ПИ ЮФУ, 2010. 400 с
  16. Щербакова О. В. Обоснование математической модели процесса соударения с целью разработки методики повышения оценки точности определения скорости движения автопоезда в начале опрокидывания на криволинейных траекториях // Вестник гражданских инженеров. 2016. № 2 (55). С. 252-259
  17. Щербакова О. В. Анализ заключений автотехнических экспертиз по дорожно-транспортным происшествиям // Вестник гражданских инженеров. 2015. № 2 (49). С. 160-163

Тормозная сила. При торможении элементарные силы трения, распределенные по поверхности фрикционных накладок, создают результирующий момент трения, т.е. тормозной момент М тор, направленный в сторону, противоположную вращению колеса. Между колесом и дорогой возникает тормозная сила Р тор .

Максимальная тормозная сила Р тор max равна силе сцепления шины с дорогой. Современные автомобили имеют тормозные механизмы на всех колесах. У двухосного автомобиля (рис. 2.16) максимальная тормозная сила, Н,

Проецируя все силы, действующие на автомобиль при торможении, на плоскость дороги, получим в общем виде уравнение движения автомобиля при торможении на подъеме:

Р тор1 + Р тор2 + Р к1 + Р к2 + Р п + Р в + Р т.д . + Р г – Р и = = Р тор + Р д + Р в + Р т.д . + Р г – Р п = 0,

где Р тор = Р тор1 + Р тор2 ; Р д = Р к1 + Р к2 + Р п – сила сопротивления дороги; Р т.д. – сила трения в двигателе, приведенная к ведущим колесам.

Рассмотрим случай торможения автомобиля только тормозной системой, когда сила Р т.д. = 0.

Учитывая, что скорость автомобиля во время торможения уменьшается, можно считать, что сила Р в 0. В связи с тем что сила Р г мала по сравнению с силой Р тор ею также можно пренебречь, особенно при экстренном торможении. Принятые допущения позволяют написать уравнение движения автомобиля при торможении в следующем виде:

Р тор + Р д – Р п = 0.

Из этого выражения после преобразования получим уравнение движения автомобиля при торможении на негоризонтальном участке дороги:



φ х + ψ – δ н a з /g = 0,

где φ х – коэффициент продольного сцепления шин с дорогой, ψ – коэффициент сопротивления дороги; δ н – коэффициент учета вращающихся масс на негоризонтальном участке дороги (при накате); a з – ускорение торможения (замедления).

В качестве измерителей тормозной динамичности автомобиля используют замедление а з при торможении и тормозной путь S тор , м. Время t тор, с, используют в качестве вспомогательного измерителя при определении остановочного пути S о.

Замедление при торможении автомобиля. Замедление при торможении определяют по формуле

а з = (Р тор + Р д + Р в + Р г)/(δ вр m ).

Если тормозные силы на всех колесах достигли значения сил сцепления, то, пренебрегая силами Р в и Р г

a з = [(φ х + ψ) / ψ вр ] g .

Коэффициент φ х обычно значительно больше коэффициента ψ, поэтому в случае полного торможения автомобиля величиной ψв выражении можно пренебречь. Тогда

a з = φ х g /δ вр ≈ φ х g .

Если во время торможения коэффициент φ х не изменяется, то замедление а з не зависит от скорости автомобиля.

Время торможения. Остановочное время (общее время торможения) – это время от момента обнаружения водителем опасности до полной остановки автомобиля. Общее время торможения включает в себя несколько отрезков:

1) время реакции водителя t р – время, в течение которого водитель принимает решение о торможении и переносит ногу с педали подачи топлива на педаль рабочей тормозной системы (в зависимости от его индивидуальных особенностей и квалификации составляет 0,4...1,5 с);

2) время срабатывания тормозного привода t пр – время от начала нажатия на тормозную педаль до начала замедления, т.е. время на перемещение всех подвижных деталей тормозного привода (в зависимости от типа тормозного привода и его технического состояния составляет 0,2...0,4 с для гидропривода, 0,6...0,8 с для пневмопривода и 1...2 с для автопоезда с пневмоприводом тормозов);

3) время t у, в течение которого замедление увеличивается от нуля (начало действия тормозного механизма) до максимального значения (зависит от интенсивности торможения, нагрузки на автомобиль, типа и состояния дорожного покрытия и тормозного механизма);

4) время торможения с максимальной интенсивностью t тор. Определяют по формуле t тор = υ/a з max – 0,5t у.

В течение времени t р + t пр автомобиль движется равномерно со скоростью υ, в период t y – замедленно, а в течение времени t тор замедленно до полной остановки.

Графическое представление о времени торможения, изменении скорости, замедлении и остановке автомобиля дает диаграмма (рис. 2.17, а).

Чтобы определить остановочное время t о , необходимое для остановки автомобиля с момента возникновения опасности, нужно суммировать все названные выше отрезки времени:

t о = t р + t пр + t у + t тор = t р + t пр + 0,5t у + υ/a з max = t сум + υ/a з max ,

где t сум = t р + t пр + 0,5t у.

Если тормозные силы на всех колесах автомобиля одновременно достигают значения сил сцепления, то, принимая коэффициент δ вр = 1, получим

t о = t сум + υ/(φ х g ).

Тормозной путь – это расстояние, которое автомобиль проходит за время торможения t тор с максимальной эффективностью. Этот параметр определяют, используя кривую t тор = f(υ) и считая, что в каждом интервале скоростей автомобиль движется равнозамедленно. Примерный вид графика зависимости пути S тор от скорости с учетом сил Р к , Р в, Р т и без учета этих сил показан на рис. 2.18, а.

Расстояние, необходимое для остановки автомобиля с момента возникновения опасности (длину так называемого остановочного пути), можно определить, если принять, что замедление изменяется так, как показано на рис. 2.17, а.

Остановочный путь условно можно разделить на несколько отрезков, соответствующих отрезкам времени t р, t пр, t у, t тор:

S о = S р + S пр + S у + S тор.

Путь, пройденный автомобилем за время t р + t пр движения с постоянной скоростью υ, определяют так:

S р + S пр =υ (t р + t пр) .

Принимая, что при уменьшении скорости от υдо υ"автомобиль движется с постоянным замедлением а ср = 0,5 а з m ах, получим путь, пройденный автомобилем за это время:

ΔS у = [υ 2 – (υ") 2 ] / а з m ах.

Тормозной путь при уменьшении скорости от υ"до нуля во время экстренного торможения

S тор = (υ") 2 / (2а з m ах) .

Если тормозные силы на всех колесах автомобиля одновременно достигли значений сил сцепления, то при Р т.д. = Р в = Р г = 0 тормозной путь автомобиля

S тор = υ 2 / (2φ х g ).

Тормозной путь прямо пропорционален квадрату скорости автомобиля в момент начала торможения, поэтому при увеличении начальной скорости тормозной путь возрастает особенно быстро (см. рис. 2.18, а).

Таким образом, остановочный путь можно определить так:

S о = S р + S пр + S у + S тор = υ (t р + t пр) + [υ 2 – (υ") 2 ] / а з m ах + (υ") 2 / (2 а з m ах) =

= υ t сум + υ 2 / (2а з m ах) = υ t сум + υ 2 / (2φ х g ).

Остановочный путь, как и остановочное время, зависит от большого числа факторов, основными из которых являются:

скорость движения автомобиля на момент начала торможения;

квалификация и физическое состояние водителя;

тип и техническое состояние рабочей тормозной системы автомобиля;

состояние дорожного покрытия;

загруженность автомобиля;

состояние шин автомобиля;

способ торможения и т.д.

Показатели интенсивности торможения. Для проверки эффективности действия тормозной системы в качестве показателей используют наибольший допустимый тормозной путь и наименьшее допустимое замедление в соответствии с ГОСТ Р 41.13.96 (для новых автомобилей) и ГОСТ Р 51709–2001 (для автомобилей, находящихся в эксплуатации). Интенсивность торможения легковых автомобилей и автобусов по условиям безопасности движения проверяют без пассажиров.

Наибольший допустимый тормозной путь S тор, м, при движении с начальной скоростью 40 км/ч на горизонтальном участке дороги с ровным, сухим, чистым цементо- или асфальтобетонным покрытием имеет следующие значения:

легковые автомобили и их модификации для перевозки грузов……….14,5

автобусы с полной массой:

до 5 т включительно…………….…………………………18,7

более 5 т…………………………………...………………19,9

грузовые автомобили с полной массой

до 3,5 т включительно…………….………….….………..19

3,5... 12 т включительно………………………………..…18,4

более 12 т………………………………………………..…17,7

автопоезда с автомобилями-тягачами с полной массой:

до 3,5 т включительно…………………….………………22,7

3,5... 12 т включительно……………………………….….22,1

более 12 т……………………………………….…………21,9

Распределение тормозной силы между мостами автомобиля. При торможении автомобиля сила инерции Р и, (см. рис. 2.16), действуя на плече h c , вызывает перераспределение нормальных нагрузок между передними и задними мостами; нагрузка на передние колеса увеличивается, а на задние – уменьшается. Поэтому нормальные реакции R z 1 и R z 2 , действующие соответственно на передние и задние мосты автомобиля во время торможения, значительно отличаются от нагрузок G 1 и G 2 , которые воспринимают мосты в статическом состоянии. Эти изменения оценивают коэффициентами изменения нормальных реакций m р1 , и m р2 , которые для случая торможения автомобиля на горизонтальной дороге определяют по формулам

m р1 = 1 + φ х h c / l 1 ; m р2 = 1 – φ х h c / l 2 .

Следовательно, нормальные реакции дороги

R z 1 = m р1 G 1 ; R z 2 = m р2 G 2 .

Во время торможения автомобиля наибольшие значения коэффициентов изменения реакций находятся в следующих пределах:

m р1 = 1,5...2; m р2 = 0,5...0,7.

Максимальную интенсивность торможения можно обеспечить при условии полного использования сцепления всеми колесами автомобиля. Однако тормозная сила между мостами может распределяться неравномерно. Такую неравномерность характеризует коэффициент распределения тормозной силы между передними и задними мостами:

β о = Р тор1 / Р тор = 1 – Р тор2 / Р тор.

Этот коэффициент зависит от различных факторов, из которых основными являются: распределение веса автомобиля между его осями; интенсивность торможения; коэффициенты изменения реакций; виды колесных тормозных механизмов и их техническое состояние и т.д.

При оптимальном распределении тормозной силы передние и задние колеса автомобиля могут быть доведены до блокировки одновременно. Для этого случая

β о = (l 1 + φ о h c) / L.

Большинство тормозных систем обеспечивает неизменное соотношение между тормозными силами колес переднего и заднего мостов (Р тор1 и Р тор2 ), поэтому суммарная сила Р тор может достигнуть максимального значения только на дороге с оптимальным коэффициентом φ о. На других дорогах полное использование сцепного веса без блокировки хотя бы одного из мостов (переднего или заднего) невозможно. Однако в последнее время появились тормозные системы с регулированием распределения тормозных сил.

Распределение общей тормозной силы между мостами не соответствует нормальным реакциям, изменяющимся во время торможения, поэтому фактическое замедление автомобиля оказывается меньше, а время торможения и тормозной путь больше теоретических значений этих показателей.

Для приближения результатов расчета к экспериментальным данным в формулы вводят коэффициент эффективности торможения К э , который учитывает степень использования теоретически возможной эффективности тормозной системы. В среднем для легковых автомобилей К э = 1,1...1,2; для грузовых автомобилей и автобусов К э = 1,4...1,6. В этом случае расчетные формулы имеют следующий вид:

a з = φ х g / К э;

t о = t сум + К э υ/(φ х g );

S тор = К э υ 2 / (2φ х g );

S о = υ t сум + К э υ 2 / (2φ х g ).

Способы торможения автомобиля. Совместное торможение тормозной системой и двигателем. Такой способ торможения применяют с целью избежать перегрева тормозных механизмов и ускоренного изнашивания шин. Тормозной момент на колесах создается одновременно тормозными механизмами и двигателем. Так как в этом случае нажатию на тормозную педаль предшествует отпускание педали подачи топлива, то угловая скорость коленчатого вала двигателя должна была бы уменьшиться до угловой скорости холостого хода. Однако на самом деле ведущие колеса через трансмиссию принудительно вращают коленчатый вал. В результате появляется дополнительная сила Р тд сопротивления движению, пропорциональная силе трения в двигателе и вызывающая замедление автомобиля.

Инерция маховика противодействует тормозящему действию двигателя. Иногда противодействие маховика оказывается больше тормозящего действия двигателя, вследствие чего интенсивность торможения несколько снижается.

Совместное торможение рабочей тормозной системой и двигателем более эффективно, чем торможение только тормозной системой, если замедление при совместном торможении a зс больше, чем замедление при торможении с отсоединенным двигателем a з, т.е. a зс > a з.

На дорогах с малым коэффициентом сцепления совместное торможение повышает поперечную устойчивость автомобиля по условиям заноса. При торможении в аварийных ситуациях сцепление полезно выключить.

Торможение с периодическим прекращением действия тормозной системы. Заторможенное нескользящее колесо воспринимает большую тормозную силу, чем при движении с частичным проскальзыванием. В случае свободного качения угловая скорость колеса ω к, радиус r к и поступательная скорость υ к движения центра колеса связаны зависимостью υ к = ω к r к . У колеса, движущегося с частичным проскальзыванием (υ*ω к r к), это равенство не соблюдается. Разность скоростей υ к и υ*определяет скорость скольжения υ ск , т. е. υ ск = υ –ω к r к.

Степень проскальзывания колес определяется как λ = υ ск / υ к . Ведомое колесо нагружено только силами сопротивления движению, поэтому касательная реакция невелика. Приложение к колесу тормозного момента вызывает увеличение касательной реакции, а также увеличение деформации и упругого проскальзывания шины. Коэффициент сцепления шины с дорожной поверхностью повышается пропорционально проскальзыванию и достигает максимума при проскальзывании около 20...25 % (рис. 2.19, а – точка В ).

Рабочий процесс поддержания максимального сцепления шины с дорожным покрытием иллюстрирует график (рис. 2.19, б ). При увеличении тормозного момента (участок ОА) угловая скорость колеса уменьшается. Для того чтобы не дать колесу остановиться (заблокироваться), тормозной момент уменьшают (участок CD). Инерционность механизма регулирования давления в тормозном приводе приводит к тому, что процесс уменьшения давления происходит с некоторым запаздыванием (участок AQ) . На участке ЕF давление на некоторое время стабилизируется. Рост угловой скорости колеса требует нового увеличения тормозного момента (участок GА) до значения, соответствующего 20...25 % величины проскальзывания.

В начале скольжения увеличивается замедление колеса и нарушается линейная пропорциональность зависимости: ω = f(M тор ). Участки и FG характеризуются инерционностью исполнительных механизмов. Тормозная система, в которой реализуется пульсирующий режим управления давлением в рабочих цилиндрах (камерах), называется антиблокировочной. Глубина модуляции давления в тормозном приводе достигает 30...37 % (рис. 2.19, в).

Колеса автомобиля благодаря циклическому нагружению тормозным моментом катятся с частичным проскальзыванием, приблизительно равным оптимальному, и коэффициент сцепления ос­тается высоким в течение периода торможения. Введение антиблокировочных устройств уменьшает износ шин и позволяет повысить поперечную устойчивость автомобиля. Несмотря на сложность и высокую стоимость, антиблокировочные тормозные системы уже узаконены стандартами многих зарубежных стран, их устанавливают на легковые автомобили среднего и высшего классов, а также на автобусы и грузовые автомобили для междугородных перевозок.

Остановочное время автомобиля определяется по следующей формуле:

где – время реакции водителя, с;

– время срабатывания тормозной системы, с;

– время нарастания замедления, с;

k э – коэффициент эффективности торможения;

V 0 – скорость автомобиля непосредственно перед началом торможения, м/с;

– коэффициент сцепления колес автомобиля с поверхностью дороги;

g – ускорение свободного падения;

принимаем равным 0,8 с;

для автомобилей с гидравлическим приводом тормозов 0,2 – 0,3 с, для автомобилей с пневматическим приводом тормозов 0,6 – 0,8 с;

рассчитывается по формуле:

где G – вес автомобиля с данной нагрузкой, Н;

b – расстояние от задней оси автомобиля до центра тяжести, м;

h ц – расстояние от центра тяжести автомобиля до поверхности дороги, м;

k 1 –скорость нарастания тормозных сил, кН/с;

L – база автомобиля, принимаем 3,77м.

Расстояние от задней оси автомобиля до центра тяжести рассчитывается по формуле:

где М 1 – масса автомобиля, приходящаяся на переднюю ось, кг;

М – масса всего автомобиля с данной нагрузкой, кг;

k 1 выбирается в зависимости от типа тормозной системы:

для автомобилей с гидравлическим приводом тормозов k 1 = 15 – 30 кН/с;

k э выбирается в зависимости от типа автомобиля и его весового состояния из следующей таблицы.

Таблица 4.1 - Значения коэффициентов эффективности торможения

Тип автомобиля

Коэффициент эффективности торможения k э

без нагруз­ки

с полной нагрузкой

Легковые автомобили

Грузовые массой до 10 т и автобусы длиной до 7,5 м

Грузовые массой более 10 т и автобусы длиннее 10м

При расчетах принимаем:

а) автомобиль до торможения двигается с постоянной скоростью, равной 40 км/ч (V 0 = 11,11 м/с);

б) коэффициент сцепления колес автомобиля с поверхностью дороги = 0,6.

в) коэффициент эффективности торможения k э принимаем без нагрузки 1,2, с полнойц нагрузкой 1,5.

г) скорость нарастания тормозных сил k 1 =25кН/с.

Для автомобиля ГАЗ-3309 без нагрузки:

По формуле (4.3) рассчитаем расстояние от задней оси автомобиля до центра тяжести:

Время нарастания замедления рассчитаем по формуле (4.2):

Остановочное время автомобиля определим по формуле (4.1):

4.2 Определение остановочного пути автомобиля с полной нагрузкой и без нагрузки

Определение остановочного пути автомобиля производим по следующей формуле:

(4.3)

Для автомобиля ГАЗ-3309с полной нагрузкой:

Для автомобиля ГАЗ-3309без нагрузки:

4.3 Определение замедления автомобиля с полной нагрузкой на уклоне и на подъеме

При торможении автомобиля на уклоне или на подъеме сила его инерции уравновешивается алгебраической суммой тор­мозной силы и силы сопротивления подъему. При движении на подъем эти силы складываются, а на уклоне – вычитаются.

Расчетом движения называют определение основных параметров движения автомобиля и пешехода: скорости, пути, времени и траектории движения.

При расчете равномерного движения автомобиля используют элементарное соотношение

где S а , V а и t à - соответственно: путь, скорость и время движения автомобиля.

Торможение при постоянном коэффициенте сцепления

Если водитель в ходе ДТП тормозил, то начальную скорость автомобиля можно достаточно точно определить по длине следа скольжения (следа хода) шины на дороге, возникающего при полной блокировке колес.

Экспериментальное исследование процесса торможения показывает, что вследствие изменения коэффициента сцепления шин с дорогой и колебаний, вызванных наличием упругих шин и элементов подвески, замедление j в процессе торможения носит сложный характер.

Рис. 5.1. Диаграмма торможения

Для упрощения расчетов полагаем, что за время tн (время нарастания замедления) замедление нарастает по закону прямой (участок АВ), а в течение времени (время tу установившегося замедления) остается постоянным (участок ВС) и по окончании периода полного торможения мгновенно уменьшается до нуля (точка С).

Замедление автомобиля рассчитывают исходя из условий полного использования сцепления всеми шинами автомобиля,

, м/с 2 (5.2)

где g = 9,81 м/с 2 ;

ч - коэффициент продольного сцепления шин с дорогой, который принимают постоянным.

Так как полное и одновременное использование сцепления всеми шинами автомобиля наблюдается относительно редко, в формулу вводят поправочный коэффициент эффективности торможения Кэ, и формула приобретает следующий вид:

, м/с 2 , (5.3)

Величина К э учитывает соответствие тормозных сил силам сцепления и зависит от условий торможения. Если при торможении были заблокированы все колеса, то К э выбирают в зависимости от х .

Таблица 5. 1

Значение к при наличии следов юза

Самый распространенный способ определения скорости движения транспортного средства перед началом торможения представлен по формуле, имеющейся во всех литературных источниках,

где: j а - замедление автомобиля, развиваемое при его торможении, зависящее от типа транспортного средства, степени его загрузки, состояния покрытия проезжей части, м/с 2 ;

t н - время нарастания замедления автомобиля при его затормаживании, зависящее также от всех вышеперечисленных факторов, как и замедление, и практически изменяющиеся пропорционально изменению загрузки автомобиля и величине коэффициента сцепления, с;

S - протяженность следа торможения автомобиля, считая до оси задних колес; если след остался от колес обеих осей автомобиля, то из величины следа «юза» вычитается база автомобиля L , м.

Тормозной и остановочный пути автомобиля

Тормозной путь, остановочный путь, след торможения, замедление транспортного средства и т. д. - к значениям этих терминов часто приходится обращаться, чтобы объективно оценить действия водителя в конкретной дорожной ситуации.

Остановочный путь транспортного средства - расстояние, которое преодолевает автомобиль с момента начала реакции водителя на опасность до его полной остановки:

, м (5.5)

Тормозной путь транспортного средства - расстояние, которое преодолевает автомобиль с момента начала нажатия на педаль тормоза до его полной остановки:

, м. (5.6)

Таким образом, остановочный путь автомобиля больше его тормозного пути на величину расстояния, которое преодолевает автомобиль за время реакции водителя t 1 .

Время реакции водителя t 1 . Значение времени реакции водителя (в автотехнической экспертизе) представляет собой промежуток времени с момента появления сигнала опасности в поле зрения водителя до начала воздействия на органы управления транспортного средства (тормозная педаль, рулевое колесо, педаль акселератора).

На время реакции водителя влияют все элементы системы «водитель - автомобиль - дорога - среда» (ВАДС), поэтому целесообразно дифференцировать значения времени реакции в зависимости от типичных дорожно-транспортных ситуаций, характеризующихся определенными сочетаниями взаимосвязанных факторов системы ВАДС. Время реакции колеблется в значительных пределах - от 0,3 до 1,4 и более секунд.

Так, при расчете максимально допустимой скорости по условиям видимости дороги минимальное время простой сенсомоторной реакции следует принимать равным 0,3 с. Такое же время реакции следует принимать при определении минимально допустимой дистанции между попутно движущимися транспортными средствами.

В случае же проявления при движении каких-либо неисправностей транспортного средства, влияющих на безопасность движения, а также при физическом вмешательстве пассажира в процесс управления транспортным средством время реакции водителя можно принять равным 1,2 с.

При дорожно-транспортных происшествиях в темное время суток, когда препятствие было малозаметно, допускается увеличение времени реакции водителя на 0,6 с.

Время запаздывания срабатывания действия тормозного привода t 2 . В течение этого времени выбирается свободный ход педали тормоза и зазоры привода тормозной системы. Величина зависит от типа привода тормозов и его технического состояния.

Гидравлический привод тормозов срабатывает быстрее пневматического. Время запаздывания срабатывания гидравлического при­вода принимается t 2 = 0,2 - 0,4 с . У легковых автомобилей при экстренном торможении t 2 = 0,2 с , а у грузовых t 2 = 0,4 с. Время запаздывания срабатывания неисправного гидравлического привода (при наличии воздуха в системе или неисправности клапанов в главном тормозном цилиндре) увеличивается. Если тормоза срабатывают со второго нажатия на педаль, то оно повышается в среднем до 0,6 с, а при трех нажатиях - до 1,0 с.

Время запаздывания срабатывания пневматического привода тормозов колеблется в пределах t 2 = 0,4-0,6 с , а среднее его значение t 2 = 0,4 с. У автопоездов, имеющих пневматический привод, это время увеличивается: при одном прицепе t 2 = 0,6 с, а при двух - t 2 = до 1 с .

Время нарастания замедления t н. Временем нарастания замедления считается время от начала появления замедления или от момента соприкосновения накладок с тормозными барабанами до начала момента движения транспортного средства с установившимся максимальным замедлением или до момента полного прижатия накладок к тормозным барабанам, а при образовании следов торможения - до начала образования последних на проезжей части.

При экстренном торможении до момента блокировки колес это время практически изменяется пропорционально изменению загрузки автомобиля и величине коэффициента сцепления.

Время нарастания замедления зависит, главным образом, от типа тормозного привода, типа и состояния дорожного покрытия, массы транспортного средства.

Так, если известна начальная скорость автомобиля V a , то скорость V ю , соответствующую началу полного торможения, можно найти, считая, что в течение t у автомобиль движется равномерно замедленно с постоянным замедлением 0,5 j .

, м/с. (5.7)

Техническая возможность предотвращения ДТП

При анализе обстоятельств дорожно-транспортного происшествия после определения величины остановочного пути автомобиля S о необходимо определить:

Удаление автомобиля (S a ) от места наезда в момент, когда возникла опасность для движения;

Время, необходимое на остановку автомобиля, т. е. время на остановочный путь (t o );

Время пешехода (t п ), которое он затрачивает на движение от места возникновения опасности до места наезда;

Время (), в течение которого заторможенный автомобиль перемещался до наезда.

Время движения пешехода к месту соударения определяется:

, с, (5.8)

где: S n - путь пешехода от места возникновения опасной обстановки до места наезда, м ;

V n - скорость движения пешехода, определенная либо по табличным данным, либо экспериментальным путем, км/ч.

Если время движения пешехода к месту соударения меньше или равно суммарному времени реакции водителя и времени срабатывания тормозного привода (t n t 1 + t 2 + 0,5t н = Т ), то пешеход окажется в полосе движения автомобиля, тогда как торможение еще не наступило. В таком случае технической возможности предотвратить наезд нет, независимо от значения скорости движения транспортного средства.

Если t a > Т, то анализ осуществляют в следующей последовательности:

Определяют расстояние S a между автомобилем и местом наезда в момент возникновения опасности для движения;

Сравнивают расстояние S а с остановочным путем транспортного средства S o .

Если остановочный путь автомобиля (S о ) меньше расстояния (S a ), то следует вывод о технической возможности избежания ДТП, в противном случае таковая у водителя отсутствует.

Для определения расстояния S a ВНИИСЭ рекомендует следующие формулы:

В случае наезда до начала торможения

, м, (5.9)

где L уд - расстояние от места удара автомобиля до его передней части, м;

В случае, если заторможенный автомобиль после наезда продолжал движение до остановки,

, м (5.10)

, м, (5.11)

где - расстояние, которое преодолевает автомобиль после наезда до полной остановки.

После каждого дорожно-транспортного происшествия обязательно определяется скорость транспортного средства до и в момент удара или наезда. Данная величина имеет столь большое значение по нескольким причинам:

  • Самый часто нарушаемый пункт правил дорожного движения именно превышение максимально допустимой скорости движения, и, таким образом, становиться возможным определить вероятного виновника ДТП.
  • Также скорость влияет на тормозной путь, а значит и на возможность избежать столкновения или наезда.

Дорогой читатель! Наши статьи рассказывают о типовых способах решения юридических вопросов, но каждый случай носит уникальный характер.

Если вы хотите узнать, как решить именно Вашу проблему - обращайтесь в форму онлайн-консультанта справа или звоните по телефону.

Это быстро и бесплатно !

Определение скорости автомобиля по тормозному пути

Под тормозным путём обычно понимают расстояние, которое проходит то или иное транспортное средство от начала торможения (или, если быть более точным, с момента активации тормозной системы) и до полной остановки. Общая, недетализированная формула, из которой возможно вывести формулу для расчета скорости, выглядит так:

Va = 0.5 х t3 х j + √2Sю х j = 0,5 0,3 5 + √2 х 21 х 5 = 0,75 +14,49 = 15,24м/с = 54,9 км/ч где: в выражении √2Sю х j, где:

  • Va – начальная скорость автомобиля, измеряемая в метрах в секунду;
  • t3 – время нарастания замедления автомобиля в секундах;
  • j – установившееся замедление автомобиля при торможении, м/с2; обратите внимание, что для мокрого покрытия – 5м/с2 по ГОСТ 25478-91, а для сухого покрытия j=6,8 м/с2, отсюда начальная скорость автомобиля при “юзе” в 21 метр равна 17,92м/с, или 64,5км/ч.
  • – длина тормозного следа (юза), измеряемая так же в метрах.

Более подробно процесс определения скорости во время ДТП рассказан в замечательной статье Учет потенциальной деформации при определении скорости автомобиля в момент ДТП . Вы можете ее в формте PDF. Авторы: А.И. Денега, О.В. Яксанов.

Исходя из указанного выше уравнения, можно сделать вывод, что на тормозной путь влияет в первую очередь скорость автомобиля, которую при известных остальных величинах нетрудно вычислить. Наиболее сложной частью вычислений по этой формуле является точное определение коэффициента трения, так как на его значение влияет целый ряд факторов:

  • тип дорожного покрытия;
  • погодные условия (при смачивании поверхности водой коэффициент трения уменьшается);
  • тип шин;
  • состояние шин.

Для точного результата расчётов также нужно принимать во внимание особенности тормозной системы конкретного транспортного средства, например:

  • материал, а также качество изготовления тормозных колодок;
  • диаметр тормозных дисков;
  • функционирование или нарушения в работе электронных устройств, управляющих тормозной системой.

Тормозной след

После достаточно быстрой активации тормозной системы на дорожном покрытии остаются отпечатки – тормозные следы. В случае если колесо во время торможения заблокировано полностью и не вращается, остаются сплошные следы, (которые иногда называют «след юза») которые многие авторы призывают считать следствием максимально возможного нажатия на педаль тормоза («тормоз в пол»). В случае же когда педаль нажата не до конца (или присутствует какой-либо дефект тормозной системы) на дорожном покрытии остаются как бы «смазанные» отпечатки протектора, которые образуются вследствие неполной блокировки колес, которые при таком торможении сохраняют возможность вращаться.

Остановочный путь

Остановочным путём считают то расстояние, которое проходит определённое транспортное средство начиная с обнаружения водителем угрозы и до остановки автомобиля. Именно в этом заключается главное отличие тормозного пути и остановочного пути – последний включает в себя и расстояние, которое преодолел автомобиль за время срабатывания тормозной системы, и расстояние, которое было преодолено за время, понадобившееся водителю на осознание опасности и реакции на нее. На время реакции водителя влияют такие факторы:

  • положение тела водителя;
  • психоэмоциональное состояние водителя;
  • утомление;
  • некоторые заболевания;
  • алкогольное или наркотическое опьянение.

Определение скорости исходя из закона сохранения количества движения

Возможно также и определение скорости движения автомобиля по характеру его перемещения после столкновения, а также, в случае столкновения с другим транспортным средством, по перемещению второй машины в результате передачи кинетической энергии от первой. Особенно часто данный метод используют при столкновениях с неподвижными транспортными средствами, или если столкновение случилось под углом, близким к прямому.

Определение скорости автомобиля исходя из полученных деформаций

Лишь очень незначительное количество экспертов определяют скорость движения автомобиля таким способом. Хотя зависимость повреждений автомобиля от его скорости и очевидна, но единой эффективной, точной и воспроизводимой методики определения скорости по полученным деформациям не существует.

Это связано с огромным количеством факторов, влияющих на образование повреждений, а также с тем, что некоторые факторы попросту невозможно учесть. Оказывать влияние на образование деформаций могут:

  • конструкция каждого конкретного автомобиля;
  • особенности распределения грузов;
  • срок эксплуатации автомобиля;
  • количества и качества пройденных транспортным средством кузовных работ;
  • старение метала;
  • модификации конструкции автомобиля.

Определение скорости в момент наезда (столкновения)

Скорость в момент наезда обычно определяют по тормозному следу, но если это по ряду причин не представляется возможным, то приблизительные цифры скорости можно получить анализируя травмы, полученные пешеходом, и повреждения, образовавшиеся после наезда на транспортном средстве.

К примеру, о скорости автомобиля можно судить по особенностям бампер-перелома – специфической для наезда автомобилем травмы, которая характеризуется наличием поперечно-осколочного перелома с крупным отломком кости неправильной ромбообразной формы на стороне удара. Локализация при ударе бампером легкового автомобиля – верхняя или средняя треть голени, для грузового автомобиля – в участке бедра.

Принято считать, что если скорость транспортного средства в момент удара превышала 60 км/ч, то, как правило, возникает косопоперечный или поперечный перелом, если же скорость была ниже 50 км/ч, то чаще всего образуется поперечно-осколочный перелом. При столкновении с неподвижным автомобилем скорость в момент удара определяется исходя из закона сохранения количества движения.

Анализ методов определения скорости автомобиля при ДТП

По тормозному следу

Достоинства:

  • относительная простота метода;
  • большое количество научных работ и составленных методических рекомендаций;
  • достаточно точный результат;
  • возможность быстрого получения результатов экспертизы.

Недостатки:

  • при отсутствии следов шин (если автомобиль, к примеру, не тормозил перед столкновением, или особенности дорожного покрытия не позволяют с достаточной достоверностью измерить след юза) проведение данного метода невозможно;
  • не учитывается воздействие одного транспортного средства в ходе столкновения на другое, что может.

По закону сохранения количества движения

Преимущества:

  • возможность определения скорости транспортного средства даже при отсутствии следов торможения;
  • при тщательном учёте всех факторов метод имеет высокую достоверность результата;
  • удобство использования метода при перекрёстных столкновениях и столкновениях с неподвижными автомобилями.

Недостатки:

  • отсутствие данных о режиме движения транспортного средства приводит к неточному результату;
  • по сравнению с предыдущим методом более сложные и громоздкие вычисления;
  • метод не учитывает энергию, затраченную на образование деформаций.

Исходя из полученных демормаций

Преимущества:

  • учитывает затраты энергии на образование деформаций;
  • не требует наличия следов торможения.

Недостатки:

  • сомнительная точность получаемых результатов;
  • огромное количество учитываемых факторов;
  • зачастую невозможность определения многих факторов;
  • отсутствие стандартизированных воспроизводимых методик определения.

На практике чаще всего используют два метода – определение скорости по следу торможения и исходя из закона сохранения количества движения. При использовании двух этих методов одновременно обеспечивается максимально точный результат, так как методики дополняют друг друга.

Остальные способы определения скорости транспортного средства значительного распространения не получили по причине недостоверности получаемых результатов и/или необходимости громоздких и сложных вычислений. Также при оценке скорости автомобиля учитывают показания свидетелей происшествия, хотя в таком случае нужно помнить о субъективности восприятия скорости разными людьми.

В некоторой мере помочь разобраться с обстоятельствами происшествия и в итоге получить более точный результат может помочь анализ видео из камер наблюдения и видеорегистраторов.